写在前面: 上周微调一个文本检测模型seglink,将特征提取层进行冻结,只训练分类回归层,然而查看tensorboard发现里面有histogram显示模型各个参数分布,看了目前这个训练模型参数分布压根就看不懂,很想知道我的预训练模型的参数分布是怎么个情况,训练了一天了,模型的参数分布较预训练的模型参数有啥变化没有,怎么办呢? 利用tf.summary将模型参数分布在tensorboard可视化: 导入需要的库  设置模型文件夹路径 import TensorFlow as tf from t…
数据集下载地址: 链接:https://pan.baidu.com/s/1l1AnBgkAAEhh0vI5_loWKw提取码:2xq4 创建数据集:https://www.cnblogs.com/xiximayou/p/12398285.html 读取数据集:https://www.cnblogs.com/xiximayou/p/12422827.html 进行训练:https://www.cnblogs.com/xiximayou/p/12448300.html 保存模型并继续进行训练:htt…
在60分钟闪电战中,我们像你展示了如何加载数据,通过为我们定义的nn.Module的子类的model提供数据,在训练集上训练模型,在测试集上测试模型.为了了解发生了什么,我们在模型训练时打印了一些统计数据,以观察训练是否正在进行.但是,我们可以做的比这更好:PyTorch和TensorBoard的集成,是一个用来可视化神经网络运行结果的工具.本教程使用Fashion-MNIST数据集说明它的一些功能,该数据集可以使用torchvision.datasets读到Pytorch中. 在本教程中,我们…
本帖子主要就是讲解利用libsvm-mat工具箱建立分类(回归模型)后,得到的模型model里面参数的意义都是神马?以及如果通过model得到相应模型的表达式,这里主要以分类问题为例子. 测试数据使用的是libsvm-mat自带的heart_scale.mat数据(270*13的一个属性据矩阵,共有270个样本,每个样本有13个属性),方便大家自己测试学习. 首先上一个简短的测试代码: %% ModelDecryption % by faruto @ faruto's Studio~ % htt…
1.  模型参数的保存: import tensorflow as tfw=tf.Variable(0.0,name='graph_w')ww=tf.Variable(tf.random_normal(shape=(2,3),stddev=0.5),name='graph_ww')# double=tf.multiply(2.0,w)saver=tf.train.Saver({'weights_w':w,'weights_ww':ww}) # 此处模型文件关键字可以自己命名,如weights_w…
在学习深度网络框架的过程中,我们发现一个问题,就是如何输出各层网络参数,用于更好地理解,调试和优化网络?针对这个问题,TensorFlow开发了一个特别有用的可视化工具包:TensorBoard,既可以显示网络结构,又可以显示训练和测试过程中各层参数的变化情况.本博文分为四个部分,第一部分介绍相关函数,第二部分是代码测试,第三部分是运行结果,第四部分介绍相关参考资料. 一. 相关函数 TensorBoard的输入是tensorflow保存summary data的日志文件.日志文件名的形式如:e…
打印pb模型参数及可视化结构import tensorflow as tf from tensorflow.python.framework import graph_util tf.reset_default_graph() # 重置计算图 output_graph_path = '/home/huihua/NewDisk/stuff_detector_v1.pb' with tf.Session() as sess: tf.global_variables_initializer().run…
使用 TensorBoard 可视化模型.数据和训练 在 60 Minutes Blitz 中,我们展示了如何加载数据,并把数据送到我们继承 nn.Module 类的模型,在训练数据上训练模型,并在测试集上测试模型.为了看到发生了什么,当模型训练的时候我们打印输出一些统计值获得对模型是否有进展的感觉.我们可以做的比这更好:PyTorch 整合了 TensorBoard,为可视化训练中的神经网络结果的工具.这篇博文说明了它的一些功能,使用可以被 torchvision.datasets 读入 Py…
.caret, .dropup > .btn > .caret { border-top-color: #000 !important; } .label { border: 1px solid #000; } .table { border-collapse: collapse !important; } .table td, .table th { background-color: #fff !important; } .table-bordered th, .table-bordere…
TensorBoard简介 Tensorflow发布包中提供了TensorBoard,用于展示Tensorflow任务在计算过程中的Graph.定量指标图以及附加数据.大致的效果如下所示, TensorBoard工作机制 TensorBoard 通过读取 TensorFlow 的事件文件来运行.TensorFlow 的事件文件包括了你会在 TensorFlow 运行中涉及到的主要数据.关于TensorBoard的详细介绍请参考TensorBoard:可视化学习.下面做个简单介绍. Tensorf…