传送门 菜爆了--总共只有一道题会做的--而且也没有短裙好难过 为啥必须得有手机才能注册账号啊喂--歧视么-- \(A\) 解方程 推一下柿子大概就是 \[x-\sqrt{n}=y+z+2\sqrt{yz}\] 如果\(\sqrt{n}\)是无理数,那么就是 \[x=y+z,{n\over 4}=yz\] 那么要满足\(n\)必须是\(4\)的倍数,然后爆搜\({n\over 4}\)的因子,统计答案就行了 如果\(n\)不是无理数,那么 \[x=\sqrt{n}+(y-z)^2\] 这东西一看…
一道树题 题目大意: 给定一棵树,边的编号为读入顺序.现在规定,区间$[L, R]$的贡献$S(L,R)$为把编号在该区间里的边都连上后,当前形成的森林中点数大于等于$2$的联通块个数. 求$\sum\limits_{i = 1} ^ {N - 1}\sum\limits_{j = i} ^ {N - 1}S(i,j)$. 数据范围:$2\le N\le 10^5$. 题解: 水题. 我们发现,一棵树上假设联通了$k$条边,那么联通块个数就是$N-k$个.所以我们可以求出,所有区间下的所有联通块…
点此看题面 大致题意: 给定自然数\(n\),让你求出方程\(\sqrt{x-\sqrt n}+\sqrt y-\sqrt z=0\)的自然数解\(x,y,z\)的数量以及所有解\(xyz\)之和. 推式子 这道题应该不是很难. 移项可以得到: \[\sqrt{x-\sqrt n}=\sqrt z-\sqrt y\] 两边同时平方: \[x-\sqrt n=y+z-2\sqrt {yz}\] 则我们可以得出第一个结论: 当\(n\)为完全平方数,即\(\sqrt n\)为整数时,有无数组解,直接…
题目描述 小象同学在初等教育时期遇到了一个复杂的数学题,题目是这样的: 给定自然数 nn,确定关于 x, y, zx,y,z 的不定方程 \displaystyle \sqrt{x - \sqrt{n}} + \sqrt{y} - \sqrt{z} =0x−n​​+y​−z​=0 的所有自然数解. 当时的小象同学并不会做这道题.多年后,经过高等教育的洗礼,小象同学发现这道题其实很简单.小象同学认为你一定也会做这道题,所以把这道题留给了你.为了便于输出,你不需要输出每一组解 (x, y, z)(x…
题意: 给定自然数n,求满足$\displaystyle \sqrt{x-\sqrt{n}}=\sqrt{z}-\sqrt{y}$的x,y,z,输出解的个数以及所有解 xyz的和 n<=1e9,t<=5000,1500ms 思路: $\displaystyle x-\sqrt{n}=z+y-2\sqrt{yz}$$if \sqrt{n}\quad is\quad rational \quad number:$$\qquad at\quad least\begin{Bmatrix}x=\sqrt…
A:化成x-√n=y+z-√4yz的形式,则显然n是完全平方数时有无数组解,否则要求n=4yz,暴力枚举n的因数即可.注意判断根号下是否不小于0. #include<iostream> #include<cstdio> #include<cmath> #include<cstdlib> #include<cstring> #include<algorithm> using namespace std; #define ll long…
题意 https://www.cometoj.com/contest/52/problem/C?problem_id=2416 思路 这里提供一种容斥的写法(?好像网上没看到这种写法) 题目要求编号为 \(i\) 的节点不能放在 \(p_i\) 位置,那我们不妨假设没有这些条件,然后再用二进制容斥的方法减去不满足条件的情况(即固定某些 \(i\) 在 \(p_i\) 上,这样会好考虑问题一点). 然后我们面临的问题就是,计算 \(A\)(二进制)这些数不能选,\(B\)(二进制)这些位置不能填的…
Comet OJ - Contest #8 传送门 A.杀手皇后 签到. Code #include <bits/stdc++.h> using namespace std; typedef long long ll; const int N = 1005; vector <string> v; int n; string s; int main() { ios::sync_with_stdio(false); cin.tie(0); cin >> n; for(int…
Comet OJ - Contest #2 简要题解 cometoj A 模拟,复杂度是对数级的. code B 易知\(p\in[l,r]\),且最终的利润关于\(p\)的表达式为\(\frac{(p-l)(\frac{L+R}{2}-p)}{r-l}\),二次函数求最值即可. code C 枚举独立集点数即可.\(\sum_{i=0}^n\binom nip^{\binom i2}\). code D 树上的任意一个满足\(|S|\ge2\)的点集\(S\)均有一个唯一的中心,即直径的中点(…
Comet OJ - Contest #2简要题解 前言: 我没有小裙子,我太菜了. A 因自过去而至的残响起舞 https://www.cometoj.com/contest/37/problem/A?problem_id=1528 容易发现那玩意增长的飞快,只要模拟就可以了 //❤ ayaponzu* #include <cstdio> #include <cstring> #include <algorithm> #include <cstdlib>…