KL散度=交叉熵-熵】的更多相关文章

熵:可以表示一个事件A的自信息量,也就是A包含多少信息. KL散度:可以用来表示从事件A的角度来看,事件B有多大不同. 交叉熵:可以用来表示从事件A的角度来看,如何描述事件B. 一种信息论的解释是: 熵的意义是对A事件中的随机变量进行编码所需的最小字节数. KL散度的意义是“额外所需的编码长度”如果我们用B的编码来表示A. 交叉熵指的是当你用B作为密码本来表示A时所需要的“平均的编码长度”. 一.熵 1.定义 衡量一个事件所包含的信息量 $$S(A)=-\sum_i P_A(x_i)logP_A…
度量两个分布之间的差异 (一)K-L 散度 K-L 散度在信息系统中称为相对熵,可以用来量化两种概率分布 P 和 Q 之间的差异,它是非对称性的度量.在概率学和统计学上,我们经常会使用一种更简单的.近似的分布来替代观察数据或太复杂的分布.K-L散度能帮助我们度量使用一个分布来近似另一个分布时所损失的信息量.一般情况下,P 表示数据的真实分布,Q 表示数据的理论分布,估计的模型分布或者 P 的近似分布. (二)K-L 散度公式 ​ Note:KL 散度仅当概率 \(P\) 和 \(Q\) 各自总和…
信息论与信息熵是 AI 或机器学习中非常重要的概念,我们经常需要使用它的关键思想来描述概率分布或者量化概率分布之间的相似性.在本文中,我们从最基本的自信息和信息熵到交叉熵讨论了信息论的基础,再由最大似然估计推导出 KL 散度而加强我们对量化分布间相似性的理解.最后我们简要讨论了信息熵在机器学习中的应用,包括通过互信息选择决策树的特征.通过交叉熵衡量分类问题的损失和贝叶斯学习等. 信息论是应用数学的一个分支,主要研究的是对一个信号包含信息的多少进行量化.它最初被发明是用来研究在一个含有噪声的信道上…
熵(entropy).KL 散度(Kullback-Leibler (KL) divergence)和交叉熵(cross-entropy)在机器学习的很多地方会用到.比如在决策树模型使用信息增益来选择一个最佳的划分,使得熵下降最大:深度学习模型最后一层使用 softmax 激活函数后,我们也常使用交叉熵来计算两个分布的“距离”.KL散度和交叉熵很像,都可以衡量两个分布之间的差异,相互之间可以转化. 1. 如何量化信息? 信息论是应用数学的一个分支,主要研究的是对一个信号包含信息的多少进行量化.信…
机器学习的面试题中经常会被问到交叉熵(cross entropy)和最大似然估计(MLE)或者KL散度有什么关系,查了一些资料发现优化这3个东西其实是等价的. 熵和交叉熵 提到交叉熵就需要了解下信息论中熵的定义.信息论认为: 确定的事件没有信息,随机事件包含最多的信息. 事件信息的定义为:\(I(x)=-log(P(x))\):而熵就是描述信息量:\(H(x)=E_{x\sim P}[I(x)]\),也就是\(H(x)=E_{x\sim P}[-log(P(x))]=-\Sigma_xP(x)l…
交叉熵可在神经网络(机器学习)中作为损失函数,p表示真实标记的分布,q则为训练后的模型的预测标记分布,交叉熵损失函数可以衡量真实分布p与当前训练得到的概率分布q有多么大的差异. 相对熵(relative entropy)就是KL散度(Kullback–Leibler divergence),用于衡量两个概率分布之间的差异. 对于两个概率分布和 ,其相对熵的计算公式为: 注意:由于 和 在公式中的地位不是相等的,所以. 相对熵的特点,是只有 时,其值为0.若 和 略有差异,其值就会大于0. 相对熵…
熵:H(p)=−∑xp(x)logp(x) 交叉熵:H(p,q)=−∑xp(x)logq(x) 相对熵:KL(p∥q)=−∑xp(x)logq(x)p(x) 相对熵(relative entropy)也叫 KL 散度(KL divergence): 用来度量两分布之间的不相似性(dissimilarity): 通过交叉熵的定义,连接三者: H(p,q)===−∑xp(x)logq(x)−∑xp(x)logp(x)−∑xp(x)logq(x)p(x)H(p)+KL(p∥q) 1. 简森不等式与 K…
损失函数 在逻辑回归建立过程中,我们需要一个关于模型参数的可导函数,并且它能够以某种方式衡量模型的效果.这种函数称为损失函数(loss function). 损失函数越小,则模型的预测效果越优.所以我们可以把训练模型问题转化为最小化损失函数的问题. 损失函数有多种,此次介绍分类问题最常用的交叉熵(cross entropy)损失,并从信息论和贝叶斯两种视角阐释交叉熵损失的内涵. ## 公式请查看:https://blog.csdn.net/Ambrosedream/article/details…
目录 机器学习基础--信息论相关概念总结以及理解 1. 信息量(熵) 2. KL散度 3. 交叉熵 4. JS散度 机器学习基础--信息论相关概念总结以及理解 摘要: 熵(entropy).KL 散度(Kullback-Leibler (KL) divergence)和交叉熵(cross-entropy)以及JS散度,在深度学习以及机器学习很多地方都用的到,尤其是对于目标函数和损失函数的定义.在逻辑回归问题中,目标函数就是用交叉熵定义的. 1. 信息量(熵) 信息论是应用数学的一个分支,主要研究…
信息熵 信息量和信息熵的概念最早是出现在通信理论中的,其概念最早是由信息论鼻祖香农在其经典著作<A Mathematical Theory of Communication>中提出的.如今,这些概念不仅仅是通信领域中的基础概念,也被广泛的应用到了其他的领域中,比如机器学习. 信息量用来度量一个信息的多少.和人们主观认识的信息的多少有些不同,这里信息的多少用信息的在一个语境中出现的概率来定义,并且和获取者对它的了解程度相关,概率越大认为它的信息量越小,概率越小认为它的信息量越大.用以下式子定义:…