16 doc values 【正排索引】】的更多相关文章

相关度评分 TF&IDF算法 Elasticsearch的相关度评分(relevance score)算法采用的是term frequency/inverse document frequency算法,简称为TF/IDF算法. 算法介绍: relevance score算法:简单来说就是,就是计算出一个索引中的文本,与搜索文本,它们之间的关联匹配程度. TF/IDF算法:分为两个部分,IF 和IDF Term Frequency(TF): 搜索文本中的各个词条在field文本中出现了多少次,出现…
主要知识点: 本节没有太懂,以后复习时补上       聚合分析的内部原理是什么????aggs,term,metric avg max,执行一个聚合操作的时候,内部原理是怎样的呢?用了什么样的数据结构去执行聚合?是不是用的倒排索引?     搜索+聚合,写个示例     GET /test_index/test_type/_search { "query": { "match": { "search_field": "test&quo…
搜索的时候,要依靠倒排索引:排序的时候,需要依靠正排索引,看到每个document的每个field,然后进行排序,所谓的正排索引,其实就是doc values 在建立索引的时候,一方面会建立倒排索引,以供搜索用:一方面会建立正排索引,也就是doc values,以供排序,聚合,过滤等操作使用 doc values是被保存在磁盘上的,此时如果内存足够,os会自动将其缓存在内存中,性能还是会很高:如果内存不足够,os会将其写入磁盘上   向index中存储的文档 PUT /cc_article/lo…
搜索的时候,要依靠倒排索引:排序的时候,需要依靠正排索引,看到每个document的每个field,然后进行排序,所谓的正排索引,其实就是doc values.在建立索引的时候,一方面会建立倒排索引,以供搜索用:一方面会建立正排索引,也就是doc values,以供排序,聚合,过滤等操作使用.doc values是被保存在磁盘上的,此时如果内存足够,os会自动将其缓存在内存中,性能还是会很高:如果内存不足够,os会将其写入磁盘上. 倒排索引举例:doc1: hello world you and…
一.正排索引(前向索引) 正排索引也称为"前向索引".它是创建倒排索引的基础,具有以下字段. (1)LocalId字段(表中简称"Lid"):表示一个文档的局部编号. (2)WordId字段:表示文档分词后的编号,也可称为"索引词编号". (3)NHits字段:表示某个索引词在文档中出现的次数. (4)HitList变长字段:表示某个索引词在文档中出现的位置,即相对于正文的偏移量. 由于一篇文章中的某些词可能出现多次,而且位置不同,而全文检索的本…
正常的索引一般是指关系型数据库里的索引. 把不同的数据存放到不同的字段中.如果要实现baidu或google那种搜索,就需要与一条记录的多个字段进行比对,需要 全表扫描,如果数据量比较大的话,性能就很低. 那反过来,如果把mysql中存放在不同字段中字符串,按一定规则拆分成term[词]存放到 一个字段中[套用mysql中的表结构,实际上不是这样处理的],然后把这些词存放到一个字段中,并在这个字段建立索引. 这样一来,搜索时,只需要查 带有索引的这列就可以了[这一点和关系型数据库 field_n…
# index_box 提供搜索功能的实现- 持有std::vector<ITEM> _buffer; 存储所有文章信息- 持有ForwardIndex _forward_index;    - _forward_index.build_findex( _buffer )    - get_all_items _forward_index.get_all_items    - get_items _forward_index.get_items(docid_vect, result, filt…
正向索引的结构如下: “文档1”的ID > 单词1:出现次数,出现位置列表:单词2:出现次数,出现位置列表:…………. “文档2”的ID > 此文档出现的关键词列表. 一般是通过key,去找value.  当用户在主页上搜索关键词“华为手机”时,假设只存在正向索引(forward index),那么就需要扫描索引库中的所有文档,找出所有包含关键词“华为手机”的文档,再根据打分模型进行打分,排出名次后呈现给用户.因为互联网上收录在搜索引擎中的文档的数目是个天文数字,这样的索引结构根本无法满足实时…
1.区别 搜索的时候,要依靠倒排索引:排序的时候,需要依靠正排索引,看到每个document的每个field,然后进行排序,所谓的正排索引,其实就是doc values 在建立索引的时候,一方面会建立倒排索引,以供搜索用:一方面会建立正排索引,也就是doc values,以供排序,聚合,过滤等操作使用 doc values是被保存在磁盘上的,此时如果内存足够,os会自动将其缓存在内存中,性能还是会很高:如果内存不足够,os会将其写入磁盘上 下面两条document doc1: hello wor…
主要知识点 doc values     搜索的时候,要依靠倒排索引:在54小节中写到在聚合排序的时候如果仅仅依靠倒排索引的话是不能得出准确的结果的,需要依靠正排索引,所谓的正排索引,其实就是doc values. 在建立索引的时候,一方面会建立倒排索引,以供搜索用:一方面会建立正排索引,也就是doc values,以供排序,聚合,过滤等操作使用 doc values是被保存在磁盘上的,此时如果内存足够,os会自动将其缓存在内存中,性能还是会很高:如果内存不足够,os会将其写入磁盘上. doc…