快速傅里叶变换 & 快速数论变换 [update 3.29.2017] 前言 2月10日初学,记得那时好像是正月十五放假那一天 当时写了手写版的笔记 过去近50天差不多忘光了,于是复习一下,具体请看手写版笔记 参考文献:picks miskcoo menci 阮一峰 Fast Fourier Transform 单位复数根 虚数 复数 \(i\),表示逆时针旋转90度 \(a+bi\),对应复平面上的向量 复数加法 同向量 复数乘法 "模长相乘,幅角相加",\((a+bi)*(…
先看看. 通常模数常见的有998244353,1004535809,469762049,这几个的原根都是3.所求的项数还不能超过2的23次方(因为998244353的分解). 感觉没啥用. #include <cstdio> #include <cstring> template <class T> inline void swap(T &a, T &b) { T c; c = a; a = b; b = c; } ; , G = ; inline in…
数学定义: (详细参考:https://www.baidu.com/link?url=oYAuG2o-pia_U3DlF5n_MJZyE5YKfaVRUHTTDbM1FwM_kDTjGCxKpw_PbOK70jE2geVioprSVyPTTQuLwN-IhMH8NREmWSDnmcfQEY8w0kq&wd=&eqid=8244c46a0009451a000000035c0e2c39) 有限长序列可以通过离散傅里叶变换(DFT)将其频域也离散化成有限长 序列.但其计算量太大,很难实时地处理问…
一.简介 前置知识:多项式乘法与 FFT. FFT 涉及大量 double 类型数据操作和 \(\sin,\cos\) 运算,会产生误差.快速数论变换(Number Theoretic Transform,简称 NTT)在 FFT 的基础上,优化了常数及误差. NTT 其实就是把 FFT 中的单位根换成了原根. NTT 解决的是多项式乘法带模数的情况,可以说有些受模数的限制,多项式系数应为整数. 二.原根 与 NTT 「算法笔记」基础数论 2 中提及了原根的部分内容. 对于质数 \(p\),若…
目录 信号, 集合, 多项式, 以及卷积性变换 卷积 卷积性变换 傅里叶变换与信号 引入: 信号分析 变换的基础: 复数 傅里叶变换 离散傅里叶变换 FFT 与多项式 \(n\) 次单位复根 消去引理, 折半引理与求和引理 重新定义 多项式的表示 快速傅里叶变换FFT 通过 FFT 在单位复数根处插值 FFT的速度优化与迭代实现 炸精现场与 NTT 原根 NTT 任意模数 NTT 卷积状物体与分治 FFT FWT 与位运算卷积 FWT 与 \(\text{or}\) 卷积 FWT 与 \(\te…
具体步骤: 1.补0:在两个多项式最前面补0,得到两个 $2n$ 次多项式,设系数向量分别为 $v_1$ 和 $v_2$. 2.求值:用FFT计算 $f_1 = DFT(v_1)$ 和 $f_2=DFT(v_2)$.这里得到的 $f_1$ 和 $f_2$ 分别是两个输入多项式在 $2n$ 次单位根处的各个取值(即点值表示) 3.乘法:把两个向量 $f_1$ 和 $f_2$ 的每一维对应相乘,得到向量 $f$.它对应输入多项式乘积的点值表示. 4.插值:用FFT计算 $v=IDFT(f)$,其实…
什么是FFT FFT是用来快速计算两个多项式相乘的一种算法. 如果我们暴力计算两个多项式相乘,复杂度必然是\(O(n^2)\)的,而FFT可以将复杂度降至\(O(nlogn)\) 如何FFT 要学习FFT,我们得先了解它的思想. 首先,我们得先了解如何表示一个多项式.显然,我们最传统的方法表示多项式就是表示它的系数就好.但是,如果我们用系数来计算两个多项式相乘,复杂度无论如何都是\(O(n^2)\)的.因此,我们引入点值表示法. 补充资料:什么是点值表示 设A(x)是一个n−1次多项式,那么把n…
1. 官方形象展示FFT:https://www.bilibili.com/video/av19141078/?spm_id_from=333.788.b_636f6d6d656e74.6 2. 讲解的不错:  https://blog.csdn.net/zb1165048017/article/details/80669105…
刚学完FFT,干脆把NTT也学了算了 (一)预备知识 关于原根,这里说得蛮详细的百度百科 为什么使用原根呢?为什么原根可以替代\(\omega_{n}\)呢?想知道为什么就看here NTT用到的各种素数,在这里here (二)重要知识 直接上代码 原题洛谷P1919 #include<cstdio> #include<iostream> #include<algorithm> #include<cstring> #include<cmath>…
原文链接https://www.cnblogs.com/zhouzhendong/p/Fast-Fourier-Transform.html 多项式 之 快速傅里叶变换(FFT)/数论变换(NTT)/例题与常用套路[入门] 前置技能 对复数以及复平面有一定的了解 对数论要求了解:逆元,原根,中国剩余定理 对分治有充足的认识 对多项式有一定的认识,并会写 $O(n^2)$ 的高精度乘法 本文概要 多项式定义及基本卷积形式 $Karatsuba$ 乘法 多项式的系数表示与点值表示,以及拉格朗日插值法…