Flink之Window Operation】的更多相关文章

目录 Configuring Time Characteristics Process Functions Window Operators Applying Functions on Windows Consecutive windowed operations Customizing Window Operators Joining Streams on Time(v1.5) Handling Late Data notice 本文API基于1.4以上 Configuring Time Ch…
Window是无限数据流处理的核心,Window将一个无限的stream拆分成有限大小的”buckets”桶,我们可以在这些桶上做计算操作.本文主要聚焦于在Flink中如何进行窗口操作,以及程序员如何从window提供的功能中获得最大的收益. 窗口化的Flink程序的一般结构如下,第一个代码段中是分组的流,而第二段是非分组的流.正如我们所见,唯一的区别是分组的stream调用keyBy(…)和window(…),而非分组的stream中window()换成了windowAll(…),这些也将贯穿…
在定义了窗口分配器之后,我们需要为每一个窗口明确的指定计算逻辑,这个就是窗口函数要做的事情, 当系统决定一个窗口已经准备好执行之后,这个窗口函数将被用来处理窗口中的每一个元素(可能是 分组的). 谁可以作为窗口函数来使用: function 优点 缺点 ReduceFunction 更高效,因为在每个窗口中增量地对每一个到达的元素执行聚合操作(增量聚合) 场景覆盖不全,无法获取窗口的元数据 AggregateFunction(max/maxBy…) FoldFunction(不推荐) Windo…
上面试了Processing Time,在这里准备看下Event Time,以及必须需要关注的,在ET场景下的Watermarks. EventTime & Watermark Event time programs must specify how to generate Event Time Watermarks, which is the mechanism that signals progress in event time. 以event time为准的程序,必须要指定waterma…
总览 Window 是flink处理无限流的核心,Windows将流拆分为有限大小的"桶",我们可以在其上应用计算. Flink 认为 Batch 是 Streaming 的一个特例,所以 Flink 底层引擎是一个流式引擎,在上面实现了流处理和批处理. 而窗口(window)就是从 Streaming 到 Batch 的一个桥梁. Flink 提供了非常完善的窗口机制. 在流处理应用中,数据是连续不断的,因此我们不可能等到所有数据都到了才开始处理. 当然我们可以每来一个消息就处理一次…
https://ci.apache.org/projects/flink/flink-docs-release-1.0/apis/streaming/event_timestamps_watermarks.html   To work with Event Time, streaming programs need to set the time characteristic accordingly. 首先配置成,Event Time final StreamExecutionEnvironme…
窗口(Window) 本文翻译自文档Windows ----------------------------------- Flink使用窗口的概念,根据element的时间戳或者其他指标,将可能无限的DataStream分割为有限的数据切片(slice).我们在处理无限数据流以及进行聚合element的transformation时需要此种窗口分割. 注意:我们在此文档中讨论的大多是keyed windowing,即window是应用在KeyedStream上的.关键字下的窗口具有一定的优势,…
https://www.elastic.co/cn/blog/building-real-time-dashboard-applications-with-apache-flink-elasticsearch-and-kibana Fabian Hueske Share Gaining actionable insights from continuously produced data in real-time is a common requirement for many business…
干货 | Flink及主流流框架比较 IT刊 百家号17-05-2220:16 引言 随着大数据时代的来临,大数据产品层出不穷.我们最近也对一款业内非常火的大数据产品 - Apache Flink做了调研,今天与大家分享一下.Apache Flink(以下简称flink) 是一个旨在提供‘一站式’ 的分布式开源数据处理框架.是不是听起来很像spark?没错,两者都希望提供一个统一功能的计算平台给用户.虽然目标非常类似,但是flink在实现上和spark存在着很大的区别,flink是一个面向流的处…
转自:http://www.sohu.com/a/142553677_804130 引言 随着大数据时代的来临,大数据产品层出不穷.我们最近也对一款业内非常火的大数据产品 - Apache Flink做了调研,今天与大家分享一下.Apache Flink(以下简称flink) 是一个旨在提供‘一站式’ 的分布式开源数据处理框架.是不是听起来很像spark?没错,两者都希望提供一个统一功能的计算平台给用户.虽然目标非常类似,但是flink在实现上和spark存在着很大的区别,flink是一个面向流…