洛谷——P3906 Geodetic集合】的更多相关文章

P3906 Geodetic集合 题目描述 图G是一个无向连通图,没有自环,并且两点之间至多只有一条边.我们定义顶点v,u最短路径就是从v到u经过边最少的路径.所有包含在v-u的最短路径上的顶点被称为v-u的Geodetic顶点,这些顶点的集合记作I(v, u). 我们称集合I(v, u)为一个Geodetic集合. 例如下图中,I(2, 5)={2, 3, 4, 5},I(1, 5)={1, 3, 5},I(2, 4)={2, 4}. 给定一个图G和若干点对v,u,请你分别求出I(v, u).…
集合 题目链接 显然,我们是要把数据先排序的, 然后从大到小枚举每个数,看是否能选上, 能选就选,不能拉倒 若能,二分查找a[i]/k,若查找成功,ans++ 将a[i]/k标记为不能选择 最后输出答案即可 (从小到大枚举会爆long long) #include<algorithm> #include<iostream> #include<cstring> #include<cstdio> using namespace std; #define N 10…
题目大意:求给定的一张无向带权图的次短路. 题解:先跑一遍 spfa 求出从起点到终点的最短路,记录路径.接着枚举删边,并重新跑 spfa,统计最小值即可. 至于为什么 dp 做法不行,暂时还不清楚. 代码如下 #include <bits/stdc++.h> using namespace std; const int maxe=2e4+10; const int maxv=210; const double inf=0x3f3f3f3f; struct node{ int nxt,to;…
[题解] 思维题,看了别人的博客才会写. 写出这样的矩阵: 1,3,9,... 2,6,18,... 4,12.36,... 8,24,72,... 我们要做的就是从矩阵中选出一些数字,但是不能选相邻的. 我们可以发现,在100000的范围内,这个矩阵最多只有18行,11列. 那么这个矩阵的取数字的方案数直接状压DP即可.f[i][j]表示第i行,状态为j的方案数,转移就是f[i][j]=sigma(f[i-1][k]) ,条件是(j&k==0且k&(k>>1)==0) 但是这…
正解:$dp$ 解题报告: 传送门$QwQ$ 考虑列一个横坐标为比值为2的等比数列,纵坐标为比值为3的等比数列的表格.发现每个数要选就等价于它的上下左右不能选. 于是就是个状压$dp$板子了$QwQ$ 然后因为有些数是无关联的就不会在一个表格中($eg:1,5$.所以要建多个表格,最后乘法原理就好,$over$ #include<bits/stdc++.h> using namespace std; #define il inline #define gc getchar() #define…
这道题问的是石头剪刀布的的出题问题 首先不难看出这是个dp题 其次这道题的状态也很好确定,之前输赢与之后无关,确定三个状态:当前位置,当前手势,当前剩余次数,所以对于剪刀,要么出石头+1分用一次机会,要么不用机会然后也不加分 然后dp一下就行了,很简单的一道题 #include <bits/stdc++.h> #include <bits/extc++.h> using namespace std; #define limit (100000 + 5)//防止溢出 #define…
接触到的新内容,[同余最短路]. 代码很好写,但思路不好理解. 同余最短路,并不是用同余来跑最短路,而是通过同余来构造某些状态,从而达到优化时间空间复杂度的目的.往往这些状态就是最短路中的点,可以类比差分约束跑最短路(f[i]+w<=f[j]构造最短路不等式(例题luogu 小k的农场)) ——来自洛谷P3403 Liao_rl 的题解 [P3403跳楼机] 题目背景 DJL为了避免成为一只咸鱼,来找srwudi学习压代码的技巧. 题目描述 Srwudi的家是一幢h层的摩天大楼.由于前来学习的蒟…
洛谷题面传送门 神仙多项式+组合数学题,不过还是被我自己想出来了( 首先对于两棵树 \(E_1,E_2\) 而言,为它们填上 \(1\sim y\) 使其合法的方案数显然是 \(y\) 的 \(E_1\cap E_2\) 的连通块次方,又显然 \(E_1,E_2\) 的导出子图是一棵森林,因此 \(E_1\cap E_2\) 连通块个数就是 \(n-|E_1\cap E_2|\),因此我们要求的答案就是 \(\sum\limits_{E_1}\sum\limits_{E_2}y^{n-|E_1\…
洛谷题面传送门 首先 \(3^n\) 的做法就不多说了,相信对于会状压 dp+会枚举子集的同学来说不算困难(暴论),因此这篇博客将着重讲解 \(2^nn^2\) 的做法. 首先如果我们把每个 \(a_i\) 看作一个集合幂级数 \(1+x^{a_i}\),那么我们的任务就是把所有这样的集合幂级数做一遍子集卷积对吧.直接做一脸过不去.不过注意到这个式子的形式比较特别,事实上学过多项式&生成函数的同学应该对形如 \(1+x^k\) 的式子特别敏感,因为在生成函数那套理论中有个恒等式 \(\ln(1+…
题目:https://www.luogu.org/problemnew/show/P3784 https://www.lydsy.com/JudgeOnline/problem.php?id=4913 和洛谷3489“付公主的背包”一样的套路. 要设 a[ i ] 表示第 i 个值有没有出现. 然后就有 \( \prod\limits_i(\frac{1}{1-x^i})^{a_i} = f(x) \) 因为有 \( \prod \) ,所以两边取 ln . \( \sum\limits_{i}…