HDU5110:Alexandra and COS(分块+容斥)】的更多相关文章

传送门 题意 给出\(n*m\)的矩阵,'X'代表treasure.\(q\)个询问,每次询问(x,y)且频率为d的潜艇能探索到多少财富.探索范围要求abs(x1-x)>=abs(y1-y),也就是左斜方/右斜方\(45°\),而且要求\(max(abs(x1-x),abs(y1-y))\)为d的倍数 分析 本题直接预处理每个点的复杂度为\(O(nmn)\),会TLE,考虑分块,将\(d<\sqrt{n}\)的点进行预处理,复杂度为\(O(nm\sqrt{n})\),其余点直接暴力算,复杂度为…
给出n个数,给出m个询问,询问 区间[l,r] [u,v],在两个区间内分别取一个数,两个的和为k的对数数量. $k<=2*N$,$n <= 30000$ 发现可以容斥简化一个询问.一个询问的答案为 $[l,v]+(r,u)-[l,u)-(r,v]$,那么我们离线询问,将一个询问分成四个,分块暴力就行了. 然后就是注意细节,不要发生越界,访问错位置之类比较蠢的问题了. /** @Date : 2017-09-24 19:54:55 * @FileName: HDU 5213 分块 容斥.cpp…
http://172.20.6.3/Problem_Show.asp?id=1518最开始只想到了n^2的写法,肯定要超时的,所以要对求gcd的过程进行优化.首先是前缀和容斥,很好理解.第二个优化大致如下:u为莫比乌斯函数,t为gcd(x,y)为i的倍数的数的个数:满足gcd(x,y)=1的数字对的数量=sigma(1<=i<=min(x,y))u[i]*t[i];t[i]=(x/i)*(y-i);由小数向下取整可知有连续的i满足x/i为定值,y/i也是定值,所以可以分块计算,用u[i]的前缀…
题意 出题人吃华 莱 士拉肚子了,心情不好,于是出了一道题面简单的难题. 共 T T T 组数据,对正整数 n n n 求 F ( n ) = ∑ i = 1 n μ 2 ( i ) i F(n)=\sum_{i=1}^n \mu^2(i)i F(n)=i=1∑n​μ2(i)i 对 2 64 2^{64} 264 取模的结果. n ≤ 1 0 14 , T ≤ 100. n\leq 10^{14},T\leq100. n≤1014,T≤100. 题解 莫比乌斯函数的平方,说明我们求的是 1 ∼…
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=6053 题意: 给出一个含 n 个元素的 a 数组, 求 bi <= ai 且 gcd(b1, ..., bn) >= 2 的 b 数组的数目: 思路: 首先想到的方法是枚举 gcd, 对于每个 gcd x 的情况, 将所有 bi / x 连乘, 然后将所有 gcd 的情况累加一下就能的到答案了 . 然而其时间复杂度为 O(t * min(a) * n), 铁定 tle: 对于后面连乘部分是可以优…
TrickGCD Time Limit: 5000/2500 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Others)Total Submission(s): 3401    Accepted Submission(s): 1268 Problem Description You are given an array A , and Zhu wants to know there are how many different…
题目 Source http://acm.hust.edu.cn/vjudge/problem/42145 Description Let’s assume there is a new chess piece named Super-rook. When placed at a cell of a chessboard, it attacks all the cells that belong to the same row or same column. Additionally it at…
一点吐槽:我看网上很多分析,都是在分析这个题的时候,讲了半天的FFT,其实我感觉更多的把FFT当工具用就好了 分析:这个题如果数据小,统计两个相加为 x 的个数这一步骤(这个步骤其实就是求卷积啊),完全可以母函数,无奈数据很大,就用FFT了 然后难点在于最后的统计,要减去自身,两个都大的,一大一小,包含自身,这是用到了容斥,再做相似的题的时候,应该多看看这方面 注:再次高度仰慕kuangbin神,这是我FFT的第二题,也是第二次用kuangbin FFT模板 #include <stdio.h>…
[GDOI2016模拟3.16]幂 \(X\in[1,A],Y\in[1,B]\),问:\(x^y\)的不用取值个数. \(A,B\)都是\(10^9\)级别. 然后我们开搞. 首先,假设一个合法的\(x\)可以表示为\(x=\prod p_i^{q_i}\),那么令\(d=gcd(q_1,q_2...q_k)\) 假设\(d>1\),显然我们不需要单独考虑,因为它可以继续化简,我们找到最简的那个数然后去一次性处理. 那么此时所有情况都变成了\(d=1\). 此时再分两种情况讨论,因为我们现在实…
[Update] 我好像现在都看不懂我当时在写什么了=-= \(Description\) 求\(\sum_{i=a}^b\sum_{j=c}^d[(i,j)=k]\) \(Solution\) 首先是把下界作为1.可以化为求 \[\sum_{i=1}^{\lfloor\frac{N}{k}\rfloor}\sum_{j=1}^{\lfloor\frac{M}{k}\rfloor}[(i,j)=1]\] 说明:大概就我不能直接看出来了.. 首先要求\([1,N]\)中有多少\(i,i|k\),再…