NEFU 628 Garden visiting (数论)】的更多相关文章

Garden visiting Problem:628  Time Limit:1000ms  Memory Limit:65536K Description There is a very big garden at Raven’s residence. We regard the garden as an n*m rectangle. Raven’s house is at the top left corner, and the exit of the garden is at the b…
//yy:想到昨天一个神题整了几个小时,最后按题解把p拆了用孙子定理..今天这个简单,把C暴力拆了.. 题目链接:nefu 628 Garden visiting 1 <= n, m, p <= 10^5 题意:给出n*m的矩形,求从左上角到右下角的路径数(对p取模). 题解:答案就是C(m+n-2, m-1),但是不能杨辉三角,而且考虑到p可能为合数..再看看这个数据范围,可以暴力进行素因子分解哇... #include<cstdio> using namespace std;…
这个东西先放在这吧.做过的以后会用#号标示出来 1.burnside定理,polya计数法    这个大家可以看brudildi的<组合数学>,那本书的这一章写的很详细也很容易理解.最好能完全看懂了,理解了再去做题,不要只记个公式.    *简单题:(直接用套公式就可以了)    pku2409 Let it Bead      #http://acm.pku.edu.cn/JudgeOnline/problem?id=2409    pku2154 Color   #http://acm.p…
转自:http://blog.sina.com.cn/s/blog_6635898a0100magq.html 1.burnside定理,polya计数法 这个大家可以看brudildi的<组合数学>,那本书的这一章写的很详细也很容易理解.最好能完全看懂了,理解了再去做题,不要只记个公式. *简单题:(直接用套公式就可以了) pku2409 Let it Bead      http://acm.pku.edu.cn/JudgeOnline/problem?id=2409 pku2154 Co…
 1.burnside定理,polya计数法 这个专题我单独写了个小结,大家可以简单参考一下:polya 计数法,burnside定理小结 2.置换,置换的运算 置换的概念还是比较好理解的,<组合数学>里面有讲.对于置换的幂运算大家可以参考一下潘震皓的那篇<置换群快速幂运算研究与探讨>,写的很好. *简单题:(应该理解概念就可以了) pku3270 Cow Sorting http://acm.pku.edu.cn/JudgeOnline/problem?id=3270 pku…
1120 . 机器人走方格 V3   基准时间限制:1 秒 空间限制:65536 KB 分值: 160 N * N的方格,从左上到右下画一条线.一个机器人从左上走到右下,只能向右或向下走.并要求只能在这条线的上面或下面走,不能穿越这条线,有多少种不同的走法?由于方法数量可能很大,只需要输出Mod 10007的结果.   Input 输入一个数N(2 <= N <= 10^9). Output 输出走法的数量 Mod 10007. Input 示例 4 Output 示例 10 思路:实际是本质…
 题目链接:http://acm.nefu.edu.cn/JudgeOnline/problemshow.php Mean: 略. analyse: 刚开始想了半天都没想出来,数据这么大,难道是有什么公式? 首先我们要知道一点:n!里面所有的0都是2*5得来的,而且不管怎样2的数量一定是>5的数量,所以我们只需要考虑有多少个5就可. 后面也是看了解题报告才知道有这么一个结论. 这是算数基本定理的一个结论: n!的素因子分解中的素数p的幂为:[n/p]+[n/p^2]+[n/p^3]+... 知道…
http://acm.nefu.edu.cn/JudgeOnline/problemShow.php?problem_id=118 求n!后面有多少个0(1<=n<=1000000000),显然,n!肯定存不下. 2*5=10,所以有多少个2*5就有多少个0,所以只须求n!中因子2和因子5的个数.根据结论有 f(2) = [ n / 2 ] + [ n / 4 ] + [ n / 8 ] + …… f(5) = [ n / 5 ] + [ n / 25 ] + [ n / 125 ] + ………
#include <iostream> using namespace std; long long gcd(long long a, long long b){ if(b == 0){ return a; } return gcd(b,a%b); } int main(int argc,char* argv[]){ long long n,m; while(cin >> n >>m){ cout<<n*m/gcd(n,m)<<endl; } r…
Given a prime p (p<108),you are to find min{x2+y2},where x and y belongs to positive integer, so that x2+y2=0 (mod p). 打表可以看出结论: x=4k+3则没有平方和会等于P …