P3953 逛公园(dp,最短路)】的更多相关文章

P3953 逛公园 题目描述 策策同学特别喜欢逛公园.公园可以看成一张NN个点MM条边构成的有向图,且没有 自环和重边.其中1号点是公园的入口,NN号点是公园的出口,每条边有一个非负权值, 代表策策经过这条边所要花的时间. 策策每天都会去逛公园,他总是从1号点进去,从NN号点出来. 策策喜欢新鲜的事物,它不希望有两天逛公园的路线完全一样,同时策策还是一个 特别热爱学习的好孩子,它不希望每天在逛公园这件事上花费太多的时间.如果1号点 到NN号点的最短路长为dd,那么策策只会喜欢长度不超过d + K…
传送门 设f[i][j]f[i][j]f[i][j]表示跟最短路差值为iii当前在点jjj的方案数. in[i][j]in[i][j]in[i][j]表示在被选择的集合当中. 大力记忆化搜索就行了. 代码: #include<bits/stdc++.h> using namespace std; inline int read(){ int ans=0; char ch=getchar(); while(!isdigit(ch))ch=getchar(); while(isdigit(ch))…
题意 题目链接 Sol 去年考NOIP的时候我好像连最短路计数都不会啊qwq.. 首先不难想到一个思路,\(f[i][j]\)表示到第\(i\)个节点,与最短路之差长度为\(j\)的路径的方案数 首先把每个节点的最短路求出来 转移的时候按拓扑序(也就是按距离从小到大排序)转移一下 然而有\(0\)边的时候会挂掉,原因是会有dis相同的时候,这时候单按dis排序会无法判断转移方向 一种方案是直接把所有\(0\)边加入到新图中,拓扑排序一遍.得到第二关键字 同时判断一下\(0\)环 #include…
题面 传送门:https://www.luogu.org/problemnew/show/P3953 Solution 这是一道神题 首先,我们不妨想一下K=0,即求最短路方案数的部分分. 我们很容易可以想到一个做法,就是魔改迪杰斯特拉做法: 如果一个点可以更新到达其他点的距离,那个点的方案数就是这个点的方案数:如果一个点所更新出来的距离和之前的相等,那个点的方案数加等当前点的方案数. 用式子可以表现为: f[j]=f[i] (dis[j]>dis[i]+x)   f[j]+=f[i] (dis…
P3953 逛公园 题面 题目描述 策策同学特别喜欢逛公园.公园可以看成一张 \(N\) 个点 \(M\) 条边构成的有向图,且没有自环和重边.其中 \(1\) 号点是公园的入口,\(N\) 号点是公园的出口,每条边有一个非负权值, 代表策策经过这条边所要花的时间. 策策每天都会去逛公园,他总是从 \(1\) 号点进去,从 \(N\) 号点出来. 策策喜欢新鲜的事物,它不希望有两天逛公园的路线完全一样,同时策策还是一个 特别热爱学习的好孩子,它不希望每天在逛公园这件事上花费太多的时间.如果 \(…
[题解]NOIP2017逛公园(DP) 第一次交挂了27分...我是不是必将惨败了... 考虑这样一种做法,设\(d_i\)表示从该节点到n​节点的最短路径,\(dp(i,k)\)表示从\(i\)节点到\(n\)多走至多\(k\)距离的方案数.转移相当于枚举走哪条边,状态的变化是如果走这条边会比最短路多多少. 转移方程 \[ dp(i,k) =\sum_{(i,u,w)\in E} dp(u,k-(w-(d_i-d_u)) \] 直接用dfs实现转移(记得判环)即可. ... ... ... 但…
题意: 策策同学特别喜欢逛公园. 公园可以看成一张 N 个点 M 条边构成的有向图,且没有自环和重边.其中 1 号点是公园的入口, N 号点是公园的出口,每条边有一个非负权值,代表策策经过这条边所要花的时间. 策策每天都会去逛公园,他总是从 1 号点进去,从 N 号点出来. 策策喜欢新鲜的事物,他不希望有两天逛公园的路线完全一样,同时策策还是一个特别热爱学习的好孩子,他不希望每天在逛公园这件事上花费太多的时间.如果 1 号点到 N 号点的最短路长为 d,那么策策只会喜欢长度不超过 d+K 的路线…
https://www.luogu.org/problemnew/show/P3953 开o2过了不开o2re一个点...写法如题 顺便一提这道题在我校oj是a不了的因为我校土豆服务器速度奇慢1s时限 // luogu-judger-enable-o2 #include<iostream> #include<cstdio> #include<algorithm> #include<cstring> #include<cmath> #include…
正解:图论(最短路)+dp(记忆化搜索) 解题报告: 这题真的是个好东西! 做了这题我才发现我的dij一直是错的...但是我以前用dij做的题居然都A了?什么玄学事件啊...我哭了TT 不过其实感觉还挺幸运的,好歹是考前发现?不然考完才知道就GG了... 先正儿八经讲完解法再吐槽自己... 先dij跑一遍最短路 然后再走一遍,我们可以跑到d+k相当于我们可以浪费k 然后dp[i][j]表示跑到第i个点了还可以浪费j的方案数 最后Σdp[n][1~k]就欧克辽... 就是个记忆化搜索 对了了解到好…
神tm比赛时多清个零就有60了T T 首先跑出1起点和n起点的最短路,因为k只有50,所以可以DP.设f[i][j]表示比最短路多走i的长度,到j的方案数. 我们发现如果在最短路上的和零边会有后向性,怎么办呢?拓扑排序. 把最短路上的点和零边的点拉出来跑拓扑排序,如果有零环的话必定度数不为0,而且要注意零环必须在<=最短路+k的路径上才输出-1,这个就用刚刚跑出来的1起点到n起点的最短路来判断就好了. 然后先按拓扑序DP出i相同的,然后再DP不在最短路上或者零边的. #include<iost…