BZOJ 3143 游走(高斯消元)】的更多相关文章

这道题是我第一次使用高斯消元解决期望类的问题,首发A了,感觉爽爽的.... 不过笔者在做完后发现了一些问题,在原文的后面进行了说明. 中文题目,就不翻大意了,直接给原题: 一个无向连通图,顶点从1编号到N,边从1编号到M. 小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概率随机选 择当前顶点的某条边,沿着这条边走到下一个顶点,获得等于这条边的编号的分数.当小Z 到达N号顶点时游走结束,总分为所有获得的分数之和. 现在,请你对这M条边进行编号,使得小Z获得的总分的期望值最小.…
3143: [Hnoi2013]游走 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1026  Solved: 448[Submit][Status] Description 一个无向连通图,顶点从1编号到N,边从1编号到M. 小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概率随机选 择当前顶点的某条边,沿着这条边走到下一个顶点,获得等于这条边的编号的分数.当小Z 到达N号顶点时游走结束,总分为所有获得的分数之和. 现在,请你…
3143: [Hnoi2013]游走 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 2264  Solved: 987[Submit][Status][Discuss] Description 一个无向连通图,顶点从1编号到N,边从1编号到M. 小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概率随机选 择当前顶点的某条边,沿着这条边走到下一个顶点,获得等于这条边的编号的分数.当小Z 到达N号顶点时游走结束,总分为所有获得的分数…
题目大意:你有一个$n*m$的网格(有边界),你从$(1,1)$开始随机游走,求走到$(n,m)$的期望步数. 数据范围:$n≤10$,$m≤1000$. 我们令 $f[i][j]$表示从$(1,1)$随机游走到$(i,j)$的期望步数.不难推出: 如果$(i,j)$与边界不想邻,则有 $f[i][j]=\frac{1}{4}(f[i-1][j]+f[i+1][j]+f[i][j-1]+f[i][j+1])+1$ 如果$(i,j)$与边界相邻,但不在四个角,则把式子中的$\frac{1}{4}$…
题目描述 一个无向连通图,顶点从1编号到N,边从1编号到M. 小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概率随机选 择当前顶点的某条边,沿着这条边走到下一个顶点,获得等于这条边的编号的分数.当小Z 到达N号顶点时游走结束,总分为所有获得的分数之和. 现在,请你对这M条边进行编号,使得小Z获得的总分的期望值最小. 输入输出格式 输入格式: 第一行是正整数N和M,分别表示该图的顶点数 和边数,接下来M行每行是整数u,v(1<=u,v<=N),表示顶点u与顶点v之间存在一条边…
传送门 这种无向图上从一个点乱走到另一个点的期望题目好几道与高斯消元有关 首先一个显然的贪心:期望经过次数越多,分配到的权值就要越小. 设$du_i$表示$i$的度,$f_i$表示点$i$的期望经过次数(我们认为经过表示需要从这个点走出去,所以$f_N=0$),考虑到一条边$(u,v)$经过次数的期望为$\frac{f_u}{du_u}+\frac{f_v}{du_v}$,我们只需要求出$f$数组就可以求出每一条边对应的期望经过次数了. 对于$f$数组,类似于$DP$,我们可以列出一系列式子:$…
题目传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=3143 我们令$P_i$表示从第i号点出发的期望次数.则$P_n$显然为$0$. 对于$P_2~P_{n-1}$,则有$P_i= \sum \frac{P_j}  {d_j}$,其中节点j与节点i有边相连,$d_j$表示节点j的度数. 对于$P_1$,则有$P_i=1+ \sum \frac{P_j}  {d_j}$. 不难发现其实就是一个$n$元一次方程组,我们可以通过高斯消元求出每一…
Description 一个无向连通图,顶点从1编号到N,边从1编号到M. 小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概率随机选 择当前顶点的某条边,沿着这条边走到下一个顶点,获得等于这条边的编号的分数.当小Z 到达N号顶点时游走结束,总分为所有获得的分数之和. 现在,请你对这M条边进行编号,使得小Z获得的总分的期望值最小. Input 第一行是正整数N和M,分别表示该图的顶点数 和边数,接下来M行每行是整数u,v(1≤u,v≤N),表示顶点u与顶点v之间存在一条边. 输…
啊 我永远喜欢期望题 BZOJ 3143 游走 题意 有一个n个点m条边的无向联通图,每条边按1~m编号,从1号点出发,每次随机选择与当前点相连的一条边,走到这条边的另一个端点,一旦走到n号节点就停下.每经过一条边,要付出这条边的编号这么多的代价.现将所有边用1~m重新编号,使总代价的期望最小,求这个最小值. 题解 我们可以求出每条边的期望经过次数,然后贪心地让经过次数多的边编号小即可. 直接用边来列方程求经过次数似乎列不出来,我们借助点来列方程. 设x[u]为从某个点出发的次数的期望,v为与u…
一个无向连通图,顶点从1编号到N,边从1编号到M. 小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概率随机选 择当前顶点的某条边,沿着这条边走到下一个顶点,获得等于这条边的编号的分数.当小Z 到达N号顶点时游走结束,总分为所有获得的分数之和. 现在,请你对这M条边进行编号,使得小Z获得的总分的期望值最小. 总分的期望值=每条边的期望经过次数*边的编号 之和. 不论我们如何编号,每条边的期望经过次数是不会变的,要使得边权和的期望最小,只需要贪心地使期望次数和边权倒序对应即可.…