论文地址:Deep Residual Learning for Image Recognition ResNet--MSRA何凯明团队的Residual Networks,在2015年ImageNet上大放异彩,在ImageNet的classification.detection.localization以及COCO的detection和segmentation上均斩获了第一名的成绩,而且Deep Residual Learning for Image Recognition也获得了CVPR20…
Deep Residual Learning for Image Recognition 简介 这是何大佬的一篇非常经典的神经网络的论文,也就是大名鼎鼎的ResNet残差网络,论文主要通过构建了一种新的网络结构来解决当网络层数过高之后更深层的网络的效果没有稍浅层网络好的问题,并且做出了适当解释,用ResNet很好的解决了这个问题. 背景 深度卷积神经网络已经在图像分类问题中大放异彩了,近来的研究也表明,网络的深度对精度起着至关重要的作用.但是,随着网络的加深,有一个问题值得注意,随着网络一直堆叠…
目录 主要内容 代码 He K, Zhang X, Ren S, et al. Deep Residual Learning for Image Recognition[C]. computer vision and pattern recognition, 2016: 770-778. @article{he2016deep, title={Deep Residual Learning for Image Recognition}, author={He, Kaiming and Zhang,…
作者:何凯明等,来自微软亚洲研究院: 这篇文章为CVPR的最佳论文奖:(conference on computer vision and pattern recognition) 在神经网络中,常遇到的问题: 1.   当网络变深以后的 vanishing/exploding gradient 问题:  对于这一个问题,现在可以说差不多已经有解决的办法了,如:使用 ReLU激活函数. 良好的权值初始化方法 .还有 intermediate normalization layers(即网络中间的…
Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun           Microsoft Research {kahe, v-xiangz, v-shren, jiansun}@microsoft.com Abstract摘要 Deeper neural networks are more difficult to train. We present a residual learning framework to ease the traini…
ResNet网络,本文获得2016 CVPR best paper,获得了ILSVRC2015的分类任务第一名. 本篇文章解决了深度神经网络中产生的退化问题(degradation problem).什么是退化问题呢?如下图: 上图所示,网络随着深度的增加(从20层增加到56层),训练误差和测试误差非但没有降低,反而变大了.然而这种问题的出现并不是因为过拟合(overfitting). 照理来说,如果我们有一个浅层的网络,然后我们可以构造一个这样的深层的网络:前面一部分的网络和浅层网络一模一样,…
Abstract We present a residual learning framework to ease the training of networks that are substantially deeper than those used previously. We explicitly reformulate the layers as learning residual functions with reference to the layer inputs, inste…
转自:http://blog.csdn.net/solomonlangrui/article/details/52455638   ABSTRACT:           神经网络的训练因其层次加深而变得愈加困难.我们所提出的残差学习框架可以更轻松的对比前人所提深很多的网络进行训练.相对于之前网络所学习的是无参考的函数,我们显著改进的网络结构可根据网络的输入对其残差函数进行学习.我们提供的详实经验证据表明对这样的残差网络进行寻优更加容易,并且随网络层次的显著加深可以获得更好的准确率.我们利用Im…
1. 摘要 更深的神经网络通常更难训练,作者提出了一个残差学习的框架,使得比过去深许多的的网络训连起来也很容易. 在 ImageNet 数据集上,作者设计的网络达到了 152 层,是 VGG-19 的 8 倍,但却有着更低的复杂性.通过集成学习模型最终取得了 3.57% 的错误率,获得了 ILSVRC 2015 比赛的第一名. 表示的深度对于许多视觉识别任务而言至关重要,仅仅由于特别深的表示,作者在 COCO 物体检测数据集上获得了 28% 的相对改进. 2. 介绍 深度神经网络通常集成了低层.…
深度在神经网络中有及其重要的作用,但越深的网络越难训练. 随着深度的增加,从训练一开始,梯度消失或梯度爆炸就会阻止收敛,normalized initialization和intermediate normalization能够解决这个问题.但依旧会出现degradation problem:随着深度的增加,准确率会达到饱和,再持续增加深度则会导致准确率下降.这个问题不是由于过拟合造成的,因为训练误差也会随着深度增加而增大. 假定输入是x,期望输出是H(x),如果我们直接把输入x传到输出作为初始…