首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
vijosP1137 组合数
】的更多相关文章
vijosP1137 组合数
vijosP1137 组合数 链接:https://vijos.org/p/1137 [思路] 唯一分解定理. 简化式子为 : C = (n*…*m) / (n-m)!. 题目要求C质因子的数目,在质因子表上进行加减操作即数的乘除操作. 步骤: 1. 构建素数表,注意不要越界. 2. 构造e数组. 3. 累计ans [代码] #include<iostream> #include<cstring> #include<vector> #include<cmat…
vijosP1388 二叉树数
vijosP1388 二叉树数 链接:https://vijos.org/p/1388 [思路] Catalan数.根据公式h=C(2n,n)/(n+1)计算.首先化简为 (n+i)/i的积(1<=i<=n) 法一: 高精单精乘除. 法二: 唯一分解定理.将乘除操作转化为对质因子指数的加减,最后用高精单精乘起来.类于vijosP1137 组合数一题 [代码1]439ms #include<iostream> #include<cstring> using namespa…
LCM性质 + 组合数 - HDU 5407 CRB and Candies
CRB and Candies Problem's Link Mean: 给定一个数n,求LCM(C(n,0),C(n,1),C(n,2)...C(n,n))的值,(n<=1e6). analyse: 很有趣的一道数论题! 看了下网上别人的做法,什么Kummer定理我还真没听说过,仔细研究一下那个鬼定理真是涨姿势了! 然而这题我并不是用Kummer那货搞的(what?). 其实这题真的很简单(不要打我),为什么这样说呢?看了下面的解释你就知道我没骗你. 首先我们看一下这个式子:LCM(C(n,0…
计算一维组合数的java实现
背景很简单,就是从给定的m个不同的元素中选出n个,输出所有的组合情况! 例如:从1到m的自然数中,选择n(n<=m)个数,有多少种选择的组合,将其输出! 本方案的代码实现逻辑是比较成熟的方案: * 一个bit位(boolean)一维数组中,初始化全为0(false), 然后给左边的n个位初始化为1(true). * <> 从左向右找第一个10的位置,将10换位程01,然后将这个01左边的所有的1全都移位到数组的最左边,此时得到的1所在位置下标对应序列即为一个组合数. * <>…
Noip2016提高组 组合数问题problem
Day2 T1 题目大意 告诉你组合数公式,其中n!=1*2*3*4*5*...*n:意思是从n个物体取出m个物体的方案数 现给定n.m.k,问在所有i(1<=i<=n),所有j(1<=j<=min(i,m))的(i,j)满足Cji是k的倍数的个数. 输入样例: 2 5 (两个数,第一个数t表示该数据有t组询问,第二个为k,接下来t行分别为n,m) 4 5 6 7 输出样例: 0 7 数据范围:1<=n,m<=2000,1<=t<=10000,1<=k…
C++单元测试 之 gtest -- 组合数计算.
本文将介绍如何使用gtest进行单元测试. gtest是google单元测试框架.使用非常方便. 首先,下载gtest (有些google项目包含gtest,如 protobuf),复制目录即可使用. http://code.google.com/p/googletest/ 如果被墙,就百度搜下,很多. 解压 gtest.zip, 得到gtest.1.x.x目录. export GTEST_HOME=该目录 编译: cd $GTEST_HOME/makemake 运行示例程序, 熟悉 gtest…
NOIP2011多项式系数[快速幂|组合数|逆元]
题目描述 给定一个多项式(by+ax)^k,请求出多项式展开后x^n*y^m 项的系数. 输入输出格式 输入格式: 输入文件名为factor.in. 共一行,包含5 个整数,分别为 a ,b ,k ,n ,m,每两个整数之间用一个空格隔开. 输出格式: 输出共1 行,包含一个整数,表示所求的系数,这个系数可能很大,输出对10007 取模后的结果. 输入输出样例 输入样例#1: 1 1 3 1 2 输出样例#1: 3 说明 [数据范围] 对于30% 的数据,有 0 ≤k ≤10 : 对于50% 的…
AC日记——组合数问题 落谷 P2822 noip2016day2T1
题目描述 组合数表示的是从n个物品中选出m个物品的方案数.举个例子,从(1,2,3) 三个物品中选择两个物品可以有(1,2),(1,3),(2,3)这三种选择方法.根据组合数的定 义,我们可以给出计算组合数的一般公式: 其中n! = 1 × 2 × · · · × n 小葱想知道如果给定n,m和k,对于所有的0 <= i <= n,0 <= j <= min(i,m)有多少对 (i,j)满足是k的倍数. 输入输出格式 输入格式: 第一行有两个整数t,k,其中t代表该测试点总共有多少…
【板子】gcd、exgcd、乘法逆元、快速幂、快速乘、筛素数、快速求逆元、组合数
1.gcd int gcd(int a,int b){ return b?gcd(b,a%b):a; } 2.扩展gcd )extend great common divisor ll exgcd(ll l,ll r,ll &x,ll &y) { if(r==0){x=1;y=0;return l;} else { ll d=exgcd(r,l%r,y,x); y-=l/r*x; return d; } } 3.求a关于m的乘法逆元 ll mod_inverse(ll a,ll m){ l…
【BZOJ-4591】超能粒子炮·改 数论 + 组合数 + Lucas定理
4591: [Shoi2015]超能粒子炮·改 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 95 Solved: 33[Submit][Status][Discuss] Description 曾经发明了脑洞治疗仪&超能粒子炮的发明家SHTSC又公开了他的新发明:超能粒子炮·改--一种可以发射威力更加 强大的粒子流的神秘装置.超能粒子炮·改相比超能粒子炮,在威力上有了本质的提升.它有三个参数n,k.它会 向编号为0到k的位置发射威力为C(n,…