作者:桂. 时间:2017-04-06  12:29:26 链接:http://www.cnblogs.com/xingshansi/p/6672908.html 声明:欢迎被转载,不过记得注明出处哦~ 前言 之前在梳理最小二乘的时候,矩阵方程有一类可以利用非负矩阵分解(Non-negative matrix factorization, NMF)的方法求解,经常见到别人提起这个算法,打算对此梳理一下.优化问题求解,最基本的是问题描述与准则函数的定义,紧接着才涉及准则函数的求解问题,本文为NMF…
作者:桂. 时间:2017-04-14   06:22:26 链接:http://www.cnblogs.com/xingshansi/p/6685811.html 声明:欢迎被转载,不过记得注明出处哦~ 前言 之前梳理了一下非负矩阵分解(Nonnegative matrix factorization, NMF),主要有: 1)准则函数及KL散度 2)NMF算法推导与实现 3)拉格朗日乘子法求解NMF(将含限定NMF的求解 一般化) 谱聚类可以参考之前的文章: 1)拉普拉斯矩阵(Laplace…
以下内容基于对[中字]信息熵,交叉熵,KL散度介绍||机器学习的信息论基础这个视频的理解,请务必先看几遍这个视频. 假设一个事件可能有多种结果,每一种结果都有其发生的概率,概率总和为1,也即一个数据分布.我们可以用哈夫曼编码作为最佳编码方案编码这些事件,并将多次事件发生的情况信息以哈夫曼编码的形式传递出去. 有一个结论是:在一个数据分布p上,用p对应的最佳编码方案来传递信息,这样传递的信息的期望量.这个期望量也被称为这个数据分布p作为一个信息的信息熵,是一个信息的一种属性. 信息熵就是,在一个数…
http://blog.csdn.net/pipisorry/article/details/52098864 非负矩阵分解(NMF,Non-negative matrix factorization) NMF的发展及原理 著名的科学杂志<Nature>于1999年刊登了两位科学家D.D.Lee和H.S.Seung对数学中非负矩阵研究的突出成果.该文提出了一种新的矩阵分解思想--非负矩阵分解(Non-negative Matrix Factorization,NMF)算法,即NMF是在矩阵中所…
主讲人 戴玮 (新浪微博: @戴玮_CASIA) Wilbur_中博(1954123) 20:02:04 我们在前面看到,概率推断的核心任务就是计算某分布下的某个函数的期望.或者计算边缘概率分布.条件概率分布等等. 比如前面在第九章尼采兄讲EM时,我们就计算了对数似然函数在隐变量后验分布下的期望.这些任务往往需要积分或求和操作. 但在很多情况下,计算这些东西往往不那么容易.因为首先,我们积分中涉及的分布可能有很复杂的形式,这样就无法直接得到解析解,而我们当然希望分布是类似指数族分布这样具有共轭分…
一.矩阵分解回想 在博文推荐算法--基于矩阵分解的推荐算法中,提到了将用户-商品矩阵进行分解.从而实现对未打分项进行打分. 矩阵分解是指将一个矩阵分解成两个或者多个矩阵的乘积.对于上述的用户-商品矩阵(评分矩阵),记为Vm×n.能够将其分解成两个或者多个矩阵的乘积,如果分解成两个矩阵Wm×k和Hk×n.我们要使得矩阵Wm×k和Hk×n的乘积能够还原原始的矩阵Vm×n: Vm×n≈Wm×k×Hk×n=V^m×n 当中,矩阵Wm×k表示的是m个用户与k个主题之间的关系,而矩阵Hk×n表示的是k个主题…
一.矩阵分解回想 矩阵分解是指将一个矩阵分解成两个或者多个矩阵的乘积.对于上述的用户-商品(评分矩阵),记为能够将其分解为两个或者多个矩阵的乘积,如果分解成两个矩阵和 .我们要使得矩阵和 的乘积能够还原原始的矩阵 当中,矩阵表示的是m个用户于k个主题之间的关系,而矩阵表示的是k个主题与n个商品之间的关系 通常在用户对商品进行打分的过程中,打分是非负的,这就要求: 这便是非负矩阵分解(NMF)的来源. 二.非负矩阵分解 2.1.非负矩阵分解的形式化定义 上面介绍了非负矩阵分解的基本含义.简单来讲,…
Kullback–Leibler divergence KL散度 In probability theory and information theory, the Kullback–Leibler divergence[1][2][3] (also information divergence,information gain, relative entropy, or KLIC) is a non-symmetric measure of the difference between two…
机器学习的面试题中经常会被问到交叉熵(cross entropy)和最大似然估计(MLE)或者KL散度有什么关系,查了一些资料发现优化这3个东西其实是等价的. 熵和交叉熵 提到交叉熵就需要了解下信息论中熵的定义.信息论认为: 确定的事件没有信息,随机事件包含最多的信息. 事件信息的定义为:\(I(x)=-log(P(x))\):而熵就是描述信息量:\(H(x)=E_{x\sim P}[I(x)]\),也就是\(H(x)=E_{x\sim P}[-log(P(x))]=-\Sigma_xP(x)l…
KL散度是度量两个分布之间差异的函数.在各种变分方法中,都有它的身影. 转自:https://zhuanlan.zhihu.com/p/22464760 一维高斯分布的KL散度 多维高斯分布的KL散度: KL散度公式为:…