paper url: https://arxiv.org/pdf/1612.02295 year:2017 Introduction 交叉熵损失与softmax一起使用可以说是CNN中最常用的监督组件之一. 尽管该组件简单而且性能出色, 但是它只要求特征的可分性, 没有明确鼓励网络学习到的特征具有类内方差小, 类间方差大的特性. 该文中,作者提出了一个广义的 large margin softmax loss(L-Softmax),是large margin系列的开篇之作. 它明确地鼓励了学习特…
作者在Caffe中引入了一个新层,一般情况在Caffe中引入一个新层需要修改caffe.proto,添加该层头文件*.hpp,CPU实现*.cpp,GPU实现*.cu,代码结果如下图所示: caffe.proto 作者在caffe.proto中引入了largemargin_inner_product_laye层所需要的一些参数,例如num_output.type等,请注意一些参数有默认取值. largemargin_inner_product_laye.hpp #ifndef CAFFE_LAR…
小喵的唠叨话:前一篇博客,我们做完了L-Softmax的准备工作.而这一章,我们开始进行前馈的研究. 小喵博客: http://miaoerduo.com 博客原文:  http://www.miaoerduo.com/deep-learning/基于caffe的large-margin-softmax-loss的实现(中).html 四.前馈 还记得上一篇博客,小喵给出的三个公式吗?不记得也没关系. 这次,我们要一点一点的通过代码来实现这些公式.小喵主要是GPU上实现前后馈的代码,因为这个层只…
小喵的唠叨话:在写完上一次的博客之后,已经过去了2个月的时间,小喵在此期间,做了大量的实验工作,最终在使用的DeepID2的方法之后,取得了很不错的结果.这次呢,主要讲述一个比较新的论文中的方法,L-Softmax,据说单model在LFW上能达到98.71%的等错误率.更重要的是,小喵觉得这个方法和DeepID2并不冲突,如果二者可以互补,或许单model达到99%+将不是梦想. 再次推销一下~ 小喵的博客网址是: http://www.miaoerduo.com 博客原文:  http://…
[INTERSPEECH 2019接收] 链接:https://arxiv.org/pdf/1904.03479.pdf 这篇文章在会议的speaker session中.本文主要讨论了说话人验证中的损失函数large margin softmax loss(结合了softmax和margins的losses). 本文从x-vector中提取speaker embedding. 这篇文章在一个公式中统一了多种margin项: 其中N表示训练样本数目,C表示训练集中的说话人数目,s是尺度因子.m1…
1. 前言 近些年来,随着以卷积神经网络(CNN)为代表的深度学习在图像识别领域的突破,越来越多的图像识别算法不断涌现.在去年,我们初步成功尝试了图像识别在测试领域的应用:将网站样式错乱问题.无线领域机型适配问题转换为"特定场景下的正常图片和异常图片的二分类问题",并借助Goolge开源的Inception V3网络进行迁移学习,重训练出对应场景下的图片分类模型,问题图片的准确率达到95%以上. 过去一年,我们在图片智能识别做的主要工作包括: 模型的落地和参数调优 模型的服务化 模型服…
一.整体 整个代码文件如下: 二.tensorflow基础 1.tf.expand_dims 作用:给定张量“ input”,此操作将在“ input”形状的尺寸索引“ axis”处插入尺寸为1的尺寸. 尺寸索引“轴”从零开始: 如果为“ axis”指定负数,则从末尾开始算起. 如果要将批次尺寸添加到单个元素,此操作很有用. 例如,如果您有一个形状为[[height,width,channels]`的图像,则可以将其与具有`expand_dims(image,0)`的1张图像一起批处理,这将使形…
文本分类单层网络就够了.非线性的问题用多层的. fasttext有一个有监督的模式,但是模型等同于cbow,只是target变成了label而不是word. fastText有两个可说的地方:1 在word2vec的基础上, 把Ngrams也当做词训练word2vec模型, 最终每个词的vector将由这个词的Ngrams得出. 这个改进能提升模型对morphology的效果, 即"字面上"相似的词语distance也会小一些. 有人在question-words数据集上跑过fastT…
第一章.spark源码分析之RDD四种依赖关系 一.RDD四种依赖关系 RDD四种依赖关系,分别是 ShuffleDependency.PrunDependency.RangeDependency和OneToOneDependency四种依赖关系.如下图所示:org.apache.spark.Dependency有两个一级子类,分别是 ShuffleDependency 和 NarrowDependency.其中,NarrowDependency 是一个抽象类,它有三个实现类,分别是OneToO…
Alink漫谈(十六) :Word2Vec源码分析 之 建立霍夫曼树 目录 Alink漫谈(十六) :Word2Vec源码分析 之 建立霍夫曼树 0x00 摘要 0x01 背景概念 1.1 词向量基础 1.1.1 独热编码 1.1.2 分布式表示 1.2 CBOW & Skip-Gram 1.2.1 CBOW 1.2.2 Skip-gram 1.3 Word2vec 1.3.1 Word2vec基本思想 1.3.2 Hierarchical Softmax基本思路 1.3.3 Hierarchi…