1. 应用机器学习是高度依赖迭代尝试的,不要指望一蹴而就,必须不断调参数看结果,根据结果再继续调参数. 2. 数据集分成训练集(training set).验证集(validation/development set).测试集(test set). 对于传统的机器学习算法,数据量(比如100.1000.10000),常用的分法是70%训练集/30%测试集.60%训练集/20%验证集/20%测试集. 对于大数据(比如100万),可能分法是98%训练集/1%验证集/1%测试集.99.5%训练集/0.…
1. 应用机器学习是高度依赖迭代尝试的,不要指望一蹴而就,必须不断调参数看结果,根据结果再继续调参数. 2. 数据集分成训练集(training set).验证集(validation/development set).测试集(test set). 对于传统的机器学习算法,数据量(比如100.1000.10000),常用的分法是70%训练集/30%测试集.60%训练集/20%验证集/20%测试集. 对于大数据(比如100万),可能分法是98%训练集/1%验证集/1%测试集.99.5%训练集/0.…
觉得有用的话,欢迎一起讨论相互学习~Follow Me 1.10 梯度消失和梯度爆炸 当训练神经网络,尤其是深度神经网络时,经常会出现的问题是梯度消失或者梯度爆炸,也就是说当你训练深度网络时,导数或坡度有时会变得非常大,或非常小,甚至以指数方式变小.这加大了训练的难度. 假设你正在训练一个很深的神经网络,并且将其权重命名为"W[1],W[2],W[3],W[4]......W[L]" 为了简化说明,我们选择激活函数为g(z)=z(线性激活函数),b[l]=0(即忽略偏置对神经网络的影响…
觉得有用的话,欢迎一起讨论相互学习~Follow Me 1.9 归一化Normaliation 训练神经网络,其中一个加速训练的方法就是归一化输入(normalize inputs). 假设我们有一个训练集,它有两个输入特征,所以输入特征x是二维的,这是数据集的散点图. 归一化输入需要两个步骤 第一步-零均值化 subtract out or to zero out the mean 计算出u即x(i)的均值 \[u=\frac{1}{m}\sum^{m}_{i=1}x^{(i)}\] u是一个…
这一周的主体是调参. 1. 超参数:No. 1最重要,No. 2其次,No. 3其次次. No. 1学习率α:最重要的参数.在log取值空间随机采样.例如取值范围是[0.001, 1],r = -4*np.random.rand(), α = 10r. No. 2 Momentum β:0.9是个不错的选择.在1-β的log取值空间随机采样.例如取值范围[0.9, 0.999],则1-β的取值空间[0.001, 0.1]. No. 2 各个隐含层的神经元数量:可以在线性取值空间随机采样. No.…
这一周的主体是调参. 1. 超参数:No. 1最重要,No. 2其次,No. 3其次次. No. 1学习率α:最重要的参数.在log取值空间随机采样.例如取值范围是[0.001, 1],r = -4*np.random.rand(), α = 10r. No. 2 Momentum β:0.9是个不错的选择.在1-β的log取值空间随机采样.例如取值范围[0.9, 0.999],则1-β的取值空间[0.001, 0.1]. No. 2 各个隐含层的神经元数量:可以在线性取值空间随机采样. No.…
这一周的主题是优化算法. 1.  Mini-batch: 上一门课讨论的向量化的目的是去掉for循环加速优化计算,X = [x(1) x(2) x(3) ... x(m)],X的每一个列向量x(i)是一个样本,m是样本个数.但当样本很多时(比如m=500万),向量化依然不能解决问题.所以提出了mini-batch的概念(Batch是指对整个样本都操作,mini-batch指只对所有样本的子集进行操作).把若干样本合并成一个mini-batch,比如这里选择1000,X{1} = [x(1) x(…
这一周的主题是优化算法. 1.  Mini-batch: 上一门课讨论的向量化的目的是去掉for循环加速优化计算,X = [x(1) x(2) x(3) ... x(m)],X的每一个列向量x(i)是一个样本,m是样本个数.但当样本很多时(比如m=500万),向量化依然不能解决问题.所以提出了mini-batch的概念(Batch是指对整个样本都操作,mini-batch指只对所有样本的子集进行操作).把若干样本合并成一个mini-batch,比如这里选择1000,X{1} = [x(1) x(…
吴恩达深度学习课程的课堂笔记以及课后作业 代码下载:https://github.com/douzujun/Deep-Learning-Coursera 吴恩达推荐笔记:https://mp.weixin.qq.com/s/cX9_DiqofPhdXrY_0oTEAw 课程1 - 神经网络和深度学习 周数 名称 类型 地址 week1 深度学习简介 测验 略 week2 神经网络基础 笔记 逻辑回归 逻辑回归推导 具有神经网络思维的Logistic回归 编程作业 识别猫 week3 浅层神经网络…
在配置训练.验证.和测试数据集的过程中做出正确的决策会更好地创建高效的神经网络,所以需要对这三个名词有一个清晰的认识. 训练集:用来训练模型 验证集:用于调整模型的超参数,验证不同算法,检验哪种算法更有效 测试集:根据最终的分类器,正确评估分类器的性能 假设这是训练数据,用一个长方形表示,通常会把这些数据划分成几部分,一部分作为训练集,一部分作为简单交叉验证集,也称之为验证集,最后一部分则作为测试集. train dev test 如果数据只有100条,100条或者1万条,通常将样本集设置为70…