【LOJ】#2115. 「HNOI2015」落忆枫音】的更多相关文章

题解 如果不加这条边,那么答案是所有点入度的乘积 加上了这条边之后,我们转而统计不合法的方案数 就是相当于统计一条路径从y到x,新图所有点度的乘积除上这条路径所有点的点度乘积 初始化为\(f[y] = \frac{\prod_{i = 2}^{n} ind[i]}{ind[y]}\) 转移按照拓扑序转移 如果u能到v \(f[v] += \frac{f[u]}{ind[v]}\) 用总答案减掉f[x]即可 特判掉y = 1的情况 代码 #include <bits/stdc++.h> #def…
[BZOJ4011][HNOI2015]落忆枫音(动态规划) 题面 BZOJ 洛谷 Description 「恒逸,你相信灵魂的存在吗?」 郭恒逸和姚枫茜漫步在枫音乡的街道上.望着漫天飞舞的红枫,枫茜突然问出 这样一个问题. 「相信吧.不然我们是什么,一团肉吗?要不是有灵魂--我们也不可能再见 到你姐姐吧.」 恒逸给出了一个略微无厘头的回答.枫茜听后笑了笑. 「那你仔细观察过枫叶吗?」 说罢,枫茜伸手,接住了一片飘落的枫叶. 「其实每一片枫叶都是有灵魂的.你看,枫叶上不是有这么多脉络吗?我听说,…
拓扑排序+DP 题解:http://blog.csdn.net/PoPoQQQ/article/details/45194103 http://www.cnblogs.com/mmlz/p/4448742.html 通过转化……路径外的$degree_i$的乘积转化成所有点的degree之积除以路径内的,所以用到逆元…… PoPoQQQ的线性筛逆元好神奇啊……>_< OrzOrz /********************************************************…
题目链接:落忆枫音 以下内容参考PoPoQQQ大爷的博客 首先我们先来考虑一下如果没有新加入的那条边,答案怎么算. 由于这是一个\(DAG\),所以我们给每个点随便选择一条入边,最后一定会构成一个树形图.于是答案就是除\(1\)号点之外所有点的入度之积. 现在新加入了一条边,如果形成了一个环并且\(1\)号点不在环上的话,我们给每个点随便选择入边,就可能会出现选出一个环的情况. 所以,我们需要考虑把这部分答案给掉.令\(S_{x\to y}\)表示\(x\)到\(y\)的任意一条路径,\(deg…
题目描述 「恒逸,你相信灵魂的存在吗?」 郭恒逸和姚枫茜漫步在枫音乡的街道上.望着漫天飞舞的红枫,枫茜突然问出这样一个问题. 「相信吧.不然我们是什么,一团肉吗?要不是有灵魂......我们也不可能再见到你姐姐吧.」 恒逸给出了一个略微无厘头的回答.枫茜听后笑了笑. 「那你仔细观察过枫叶吗?」 说罢,枫茜伸手,接住了一片飘落的枫叶. 「其实每一片枫叶都是有灵魂的.你看,枫叶上不是有这么多脉络吗?我听说,枫叶上有一些特殊的位置,就和人的穴位一样.脉络都是连接在这些穴位之间的.枫树的灵魂流过每片枫叶…
题目链接 戳我 \(Description\) 给一张\(n\)割点\(m\)条边的\(DAG\),保证点\(1\)不存在入边,现在需要在\(DAG\)中加入一条不在原图中的边\((x,y)\),求这个有向图以\(1\)为根的树形图个数对\(1e9+7\)去模的结果 \(n<=100000,m<=200000\) \(Solution\) 我们首先来看看如果没有\((x,y)\)这一条边的话,在\(DAG\)上的方案数为多少? \[ans=\prod_{i=1}^{n} vis[i]\] \(…
题面 题解 求一个有特殊性质的有向图的生成树的个数. 首先,有向图的生成树的个数可以用矩阵树定理,能够得到\(40\)分. 但是如果它是一个\(\mathrm{DAG}\)就很好做,枚举每一个点的父亲,答案就是\(\prod d[i]\),\(d\)是每个点的入度 发现加了一条边之后只会形成一个环,设环上的点为\(a_1, a_2, \cdots, a_k\),那么形成的不合法的生成树有\(\frac{\prod_i d[i]}{\prod_{i = 1} ^ k d[a_i]}\)种. 于是答…
DAG上有个环, 先按DAG计数(所有节点入度的乘积), 然后再减去按拓扑序dp求出的不合法方案数(形成环的方案数). -------------------------------------------------------------------------------------- #include<cstdio> #include<cstring> #include<algorithm>   using namespace std;   typedef lo…
4011: [HNOI2015]落忆枫音 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 1125  Solved: 603[Submit][Status][Discuss] Description 「恒逸,你相信灵魂的存在吗?」 郭恒逸和姚枫茜漫步在枫音乡的街道上.望着漫天飞舞的红枫,枫茜突然问出 这样一个问题. 「相信吧.不然我们是什么,一团肉吗?要不是有灵魂……我们也不可能再见 到你姐姐吧.」 恒逸给出了一个略微无厘头的回答.枫茜听后笑了笑.…
[HNOI2015]落忆枫音 设每个点入度是\(d_i\),如果不加边,答案是 \[ \prod_{i=2}^nd_i \] 意思是我们给每个点选一个父亲 然后我们加了一条边,最后如果还这么统计,那么有一些不合法的图是\(y,\dots,x\)形成了一个环,考虑把所有环的方案减掉. 考虑枚举环上的点集\(S\),答案为 \[ \sum_S\prod_{i\notin s}d_i \] 意思是环上的点钦定父亲,其他的点照旧统计 这个方案数可以dp,设\(dp_i\)表示\(i,\dots,x\)形…