首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
2.7 Sobel导数
】的更多相关文章
Sobel导数
Sobel 导数 目标 本文档尝试解答如下问题: 如何使用OpenCV函数 Sobel 对图像求导. 如何使用OpenCV函数 Scharr 更准确地计算 核的导数. 原理 Note 以下内容来自于Bradski和Kaehler的大作: Learning OpenCV . 上面两节我们已经学习了卷积操作.一个最重要的卷积运算就是导数的计算(或者近似计算). 为什么对图像进行求导是重要的呢? 假设我们需要检测图像中的 边缘 ,如下图: 你可以看到在 边缘 ,相素值显著的 改变 了.表示这一 改变…
2.7 Sobel导数
OpenCV函数 Sobel(src_gray,grad_x/grad_y,ddepth,x_order,y_order,scale,delta,BORDER_DEFAULT ) Scharr( ) 边缘检测 为何要求导,如下图: 假设需要检测图中的边缘,可以看到在边缘像素值显著改变,灰度值跃升 利用一阶导数可以清晰喊道跃升(高峰值) 从以上推论,检测边缘可以通过定位梯度值大于邻域的像素的方法找到(或者推广到大于一个阈值) Sobel算子 Sobel算子是一个邻域微分算子(discrete di…
OpenCV Sobel 导数
#include "opencv2/imgproc/imgproc.hpp" #include "opencv2/highgui/highgui.hpp" #include <stdlib.h> #include <stdio.h> using namespace cv; /** @function main */ int main( int argc, char** argv ) { Mat src, src_gray; Mat grad;…
opencv-学习笔记(6)图像梯度Sobel以及canny边缘检测
opencv-学习笔记(6)图像梯度Sobel以及canny边缘检测 这章讲了 sobel算子 scharr算子 Laplacion拉普拉斯算子 图像深度问题 Canny检测 图像梯度 sobel算子和scharr算子 sobel算子是高斯平滑与微分操作的结合体,所以它的抗噪声能力很强 我们可以设定求导的方向xorder或者yorder.也可以设置卷积核的大学 Ps当我们设置卷积核的大小为ksize=-1时候,这个函数会用 3*3的scharr算子如下 官方推荐在使用3*3滤波器时候要用scha…
2.opencv图像处理常用操作
图像的平滑处理 平滑,也称 模糊, 平滑处理时需要用到一个滤波器 .滤波器想象成一个包含加权系数的窗口,这个加权系数也叫做核或者模版. // 图像平滑处理分而学之.cpp : 定义控制台应用程序的入口点. // #include "stdafx.h" #include <iostream> #include <opencv2/opencv.hpp> using namespace std; using namespace cv; const int MAX_KE…
【OpenCV新手教程第14】OpenCVHough变换:霍夫变换线,霍夫变换圆汇编
本系列文章由@浅墨_毛星云 出品.转载请注明出处. 文章链接:http://blog.csdn.net/poem_qianmo/article/details/26977557 作者:毛星云(浅墨) 微博:http://weibo.com/u/1723155442 知乎:http://www.zhihu.com/people/mao-xing-yun 邮箱: happylifemxy@163.com 写作当前博文时配套使用的OpenCV版本号: 2.4.9 本篇文章中.我们一起探讨了Ope…
SciPy模块应用
1.图像模糊 图像的高斯模糊是非常经典的图像卷积例子.本质上,图像模糊就是将(灰度)图像I 和一个高斯核进行卷积操作:,其中是标准差为σ的二维高斯核.高斯模糊通常是其他图像处理操作的一部分,比如图像插值操作.兴趣点计算以及很多其他应用.SciPy 有用来做滤波操作的scipy.ndimage.filters 模块.该模块使用快速一维分离的方式来计算卷积.eg: from PIL import Image from numpy import * from scipy.ndimage import…
[OpenCV-Python] OpenCV 中的图像处理 部分 IV (二)
部分 IVOpenCV 中的图像处理 OpenCV-Python 中文教程(搬运)目录 16 图像平滑 目标 • 学习使用不同的低通滤波器对图像进行模糊 • 使用自定义的滤波器对图像进行卷积(2D 卷积) 2D 卷积 与一维信号一样,我们也可以对 2D 图像实施低通滤波(LPF),高通滤波(HPF)等.LPF 帮助我们去除噪音,模糊图像.HPF 帮助我们找到图像的边缘OpenCV 提供的函数 cv.filter2D() 可以让我们对一幅图像进行卷积操作.下面我们将对一幅图像使用平均滤波器.下面是…
[OpenCV-Python] OpenCV 中机器学习 部分 VIII
部分 VIII机器学习 OpenCV-Python 中文教程(搬运)目录 46 K 近邻(k-Nearest Neighbour ) 46.1 理解 K 近邻目标 • 本节我们要理解 k 近邻(kNN)的基本概念.原理 kNN 可以说是最简单的监督学习分类器了.想法也很简单,就是找出测试数据在特征空间中的最近邻居.我们将使用下面的图片介绍它. 上图中的对象可以分成两组,蓝色方块和红色三角.每一组也可以称为一个 类.我们可以把所有的这些对象看成是一个城镇中房子,而所有的房子分别属于蓝色和红色家族,…
OpenCV常用库函数[典]
一.core 模块 1.Mat - 基本图像容器 Mat 是一个类,由两个数据部分组成:矩阵头(包含矩阵尺寸,存储方法,存储地址等信息)和一个指向存储所有像素值的矩阵(根据所选存储方法的不同矩阵可以是不同的维数)的指针. 创建Mat对象方法: 1->Mat() 构造函数: Mat M(2,2, CV_8UC3, Scalar(0,0,255)); int sz[3] = {2,2,2}; Mat L(3,sz, CV_8UC(1), Scalar::all(0)); 2->…
【OpenCV入门教程之十四】OpenCV霍夫变换:霍夫线变换,霍夫圆变换合辑
http://blog.csdn.net/poem_qianmo/article/details/26977557 本系列文章由@浅墨_毛星云 出品,转载请注明出处. 文章链接:http://blog.csdn.net/poem_qianmo/article/details/26977557 作者:毛星云(浅墨) 微博:http://weibo.com/u/1723155442 知乎:http://www.zhihu.com/people/mao-xing-yun 邮箱: happylif…
学习 opencv---(13)opencv霍夫变换:霍夫线变换,霍夫圆变换
在本篇文章中,我们将一起学习opencv中霍夫变换相关的知识点,以及了解opencv中实现霍夫变换的HoughLines,HoughLinesP函数的使用方法,实现霍夫圆变换的HoughCircles函数的使用方法. 先尝鲜一下其中一个示例程序的运行截图: 一.引言 在图像处理和计算机视觉领域中,如何从当前的图像中提取所需要的特征信息是图像识别的关键所在.在许多应用场合中需要快速准确的检测出直线或者圆.其中一种非常有效的解决问题的方法是霍夫(Hough)变换,其为图像处理中从图像识别几何形状的基…
学习opencv-------函数使用二(图像变换)
#include"cv.h" #include"highgui.h" using namespace cv; void CVFILTER2D(IplImage * img, IplImage *dst); void CVCOPYMAKEBORDER(IplImage *ori, IplImage *dst); void CVSOBEL(IplImage * img, IplImage *dst); void CVLAPLACE(IplImage *img, IplI…
Python图像处理库(2)
1.4 SciPy SciPy(http://scipy.org/) 是建立在 NumPy 基础上,用于数值运算的开源工具包.SciPy 提供很多高效的操作,可以实现数值积分.优化.统计.信号处理,以及对我们来说最重要的图像处理功能.接下来,本节会介绍 SciPy 中大量有用的模块.SciPy 是个开源工具包,可以从http://scipy.org/Download 下载. 1.4.1 图像模糊 图像的高斯模糊是非常经典的图像卷积例子.本质上,图像模糊就是将(灰度)图像 I 和一个高斯核进行卷积…
Python中的图像处理
第 1 章 基本的图像操作和处理 本章讲解操作和处理图像的基础知识,将通过大量示例介绍处理图像所需的 Python 工具包,并介绍用于读取图像.图像转换和缩放.计算导数.画图和保存结果等的基本工具.这些工具的使用将贯穿本书的剩余章节. 1.1 PIL:Python图像处理类库 PIL(Python Imaging Library Python,图像处理类库)提供了通用的图像处理功能,以及大量有用的基本图像操作,比如图像缩放.裁剪.旋转.颜色转换等.PIL 是免费的,可以从 http://www.…
【OpenCV新手教程之十四】OpenCV霍夫变换:霍夫线变换,霍夫圆变换合辑
本系列文章由@浅墨_毛星云 出品,转载请注明出处. 文章链接:http://blog.csdn.net/poem_qianmo/article/details/26977557 作者:毛星云(浅墨) 微博:http://weibo.com/u/1723155442 知乎:http://www.zhihu.com/people/mao-xing-yun 邮箱: happylifemxy@163.com 写作当前博文时配套使用的OpenCV版本号: 2.4.9 本篇文章中.我们一起探讨了Ope…
(转)OpenCV 基本知识框架
以下是对<学习OpenCV>一书知识框架的简单梳理 转自:http://blog.chinaunix.net/uid-8402201-id-2899695.html 一.基础操作 1. 数据类型 数据结构了解 图像相关:cvArr cvMat IplImage 数据数组的维数, 与数据的通道数 见P46 (76) 2. 常见的矩阵操作熟悉 3. 数据的保存和读取 4. 图像的加载和显示 5. 视频的操作 6. 内存与序列 a. 内存存储器 …
OpenCV —— 图像变换
将一副图像转变成另一种表现形式 ,比如,傅里叶变换将图像转换成频谱分量 卷积 —— 变换的基础 cvFilter2D 源图像 src 和目标图像 dst 大小应该相同 注意:卷积核的系数应该是浮点类型的,必须用 CV_32F 来初始化矩阵 cvFilter2D 函数内部处理边界 —— cvCopyMakeBorder (将特定的图像轻微变大,然后以一种方式填充图像边界) 梯度和Sobel导数 sobel 算子包含任意阶的微分以及融合偏导 大核对导数有更好的逼近,小核对噪声更加敏感 如果源图…
基本图像操作和处理(python)
基本图像操作和处理(python) PIL提供了通用的图像处理功能,以及大量的基本图像操作,如图像缩放.裁剪.旋转.颜色转换等. Matplotlib提供了强大的绘图功能,其下的pylab/pyplot接口包含很多方便用户创建图像的函数. 为了观察和进一步处理图像数据,首先需要加载图像文件,并且为了查看图像数据,我们需要将其绘制出来. from PIL import Image import matplotlib.pyplot as plt import numpy as np # 加载图像 i…
OpenCV学习笔记3
OpenCV学习笔记3 图像平滑(低通滤波) 使用低通滤波器可以达到图像模糊的目的.这对与去除噪音很有帮助.其实就是去除图像中的高频成分(比如:噪音,边界).所以边界也会被模糊一点.(当然,也有一些模糊技术不会模糊掉边界).OpenCV 提供了四种模糊技术. 2D 卷积 对 2D 图像实施低通滤波(LPF:low pass filter),高通滤波(HPF:high pass filter)等.LPF 帮助我们去除噪音,模糊图像.HPF 帮助我们找到图像的边缘OpenCV 提供的函数 cv.fi…
Image Processing and Computer Vision_Review:Local Invariant Feature Detectors: A Survey——2007.11
翻译 局部不变特征探测器:一项调查 摘要 -在本次调查中,我们概述了不变兴趣点探测器,它们如何随着时间的推移而发展,它们如何工作,以及它们各自的优点和缺点.我们首先定义理想局部特征检测器的属性.接下来是对过去四十年中根据不同类别的特征提取方法组织的文献的概述.然后,我们对选择的方法进行更详细的分析,这些方法对研究领域产生了特别重大的影响.最后总结并展望未来的研究方向. 1引言 在本节中,我们将讨论局部(不变)特征的本质.这个词我们的意思是什么?使用局部特征有什么好处?我们可以用它们做什么?理想的…
OpenCV学习笔记(10)——图像梯度
学习图像梯度,图像边界等 梯度简单来说就是求导. OpenCV提供了三种不同的梯度滤波器,或者说高通滤波器:Sobel,Scharr和Lapacian.Sobel,Scharr其实就是求一阶或二阶导.Scharr是对Sobel的部分优化.Laplacian是求二阶导. 1.Sobel算子和Scharr算子 Sobel算子是高斯平滑和微分操作的结合体,所以他的抗噪声能力很好.你可以设定求导的方向(xorder 或 yorder).还可以设定使用的卷积核大小(ksize).当ksize=-1时,会使…
opencv-霍夫直线变换与圆变换
转自:https://blog.csdn.net/poem_qianmo/article/details/26977557 一.引言 在图像处理和计算机视觉领域中,如何从当前的图像中提取所需要的特征信息是图像识别的关键所在.在许多应用场合中需要快速准确地检测出直线或者圆.其中一种非常有效的解决问题的方法是霍夫(Hough)变换,其为图像处理中从图像中识别几何形状的基本方法之一,应用很广泛,也有很多改进算法.最基本的霍夫变换是从黑白图像中检测直线(线段).这篇文章就将介绍OpenCV中霍夫变换的使…
初识OpenCV-Python - 009: 图像梯度
本节学习找到图像的梯度和边界.只要用到的函数为: cv2.Sobel(), cv2.Scharr(), cv2.Laplacian() 1. Laplacian 和 Sobel的对比 import cv2from matplotlib import pyplot as plt img = cv2.imread('dave.png',0)#Laplcatician 导数计算图像的拉普拉斯变换,其中每个导数都使用Sobel导数laplacian = cv2.Laplacian(img,cv2.CV_…
opencv —— HoughCircles 霍夫圆变换原理及圆检测
霍夫圆变换原理 霍夫圆变换的基本原理与霍夫线变换(https://www.cnblogs.com/bjxqmy/p/12331656.html)大体类似. 对直线来说,一条直线能由极径极角(r,θ)表示,而对于圆来说,我们需要三个参数:圆心(a,b),半径 r. 笛卡尔坐标系中圆的方程为: 化简便可得到: 对于(x0,y0),我们可以将通过这一点的所有圆统一定义为: a = x0 - r·cosθ b = y0 - r·sinθ 这就意味着每一组(a,b,r)代表一个通过点 的圆. 对于一个…
OpenCV-Python 哈里斯角检测 | 三十七
目标 在本章中, 我们将了解"Harris Corner Detection"背后的概念. 我们将看到以下函数:cv.cornerHarris(),cv.cornerSubPix() 理论 在上一章中,我们看到角是图像中各个方向上强度变化很大的区域.Chris Harris和Mike Stephens在1988年的论文<组合式拐角和边缘检测器>中做了一次尝试找到这些拐角的尝试,所以现在将其称为哈里斯拐角检测器.他把这个简单的想法变成了数学形式.它基本上找到了(u,v)(u,…
<学习opencv>过滤器和卷积
/*=========================================================================*/ // 过滤器和卷积 /*=========================================================================*/ 过滤器,内核和卷积 滤波器是从某个图像i(x,y)开始,通过计算i中像素的某个函数中每个像素的位置x,y来计算新的图像i′(x,y), 该函数位于同一x,y位置周围的某…
EasyPR--开发详解(3)高斯模糊、灰度化和Sobel算子
在上篇文章中我们了解了PlateLocate的过程中的所有步骤.在本篇文章中我们对前3个步骤,分别是高斯模糊.灰度化和Sobel算子进行分析. 一.高斯模糊 1.目标 对图像去噪,为边缘检测算法做准备. 2.效果 在我们的车牌定位中的第一步就是高斯模糊处理. 图1 高斯模糊效果 3.理论 详细说明可以看这篇:阮一峰讲高斯模糊. 高斯模糊是非常有名的一种图像处理技术.顾名思义,其一般应用是将图像变得模糊,但同时高斯模糊也应用在图像的预处理阶段.理解高斯模糊前,先看一下平均模糊算法.平均模糊的算法非…
图像边缘检测——Sobel算子
边缘是图像最基本的特征,其在计算机视觉.图像分析等应用中起着重要的作用,这是因为图像的边缘包含了用于识别的有用信息,是图像分析和模式识别的主要特征提取手段. 1.何为“图像边缘”? 在图像中,“边缘”指的是临界的意思.一幅图像的“临界”表示为图像上亮度显著变化的地方,边缘指的是一个区域的结束,也是另一个区域的开始.“边缘点”指的是图像中具有坐标[x,y],且处在强度显著变化的位置上的点. 2.如何表示边缘检测? 在数学上,用导数来表示改变的快慢.基于此,有许多方法用于边缘检测,他们绝大部分可以划…
paper 82:边缘检测的各种微分算子比较(Sobel,Robert,Prewitt,Laplacian,Canny)
不同图像灰度不同,边界处一般会有明显的边缘,利用此特征可以分割图像.需要说明的是:边缘和物体间的边界并不等同,边缘指的是图像中像素的值有突变的地方,而物体间的边界指的是现实场景中的存在于物体之间的边界.有可能有边缘的地方并非边界,也有可能边界的地方并无边缘,因为现实世界中的物体是三维的,而图像只具有二维信息,从三维到二维的投影成像不可避免的会丢失一部分信息:另外,成像过程中的光照和噪声也是不可避免的重要因素.正是因为这些原因,基于边缘的图像分割仍然是当前图像研究中的世界级难题,目前研究者正在试图…