题意 给你 \(n\) 个完全相同骰子,每个骰子有 \(k\) 个面,分别标有 \(1\) 到 \(k\) 的所有整数.对于\([2,2k]\) 中的每一个数 \(x\) 求出有多少种方案满足任意两个骰子的和都不为 \(x\) 的方案数. 分析 对于每个 \(x\) ,考虑当 \(i\le x\) 时, \(i\) 和 \(x-i\) 只能出现一个.将他们看成同一种权值,数量记为 \(w\) ,剩余权值数量记位 \(cnt\) ,然后枚举有多少种特殊权值没出现 (\(ans\)) 并容斥: \[…
4487: [Jsoi2015]染色问题 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 211  Solved: 127[Submit][Status][Discuss] Description 棋盘是一个n×m的矩形,分成n行m列共n*m个小方格.现在萌萌和南南有C种不同颜色的颜料,他们希望把棋盘用这些颜料染色,并满足以下规定:1.  棋盘的每一个小方格既可以染色(染成C种颜色中的一种) ,也可以不染色.2.  棋盘的每一行至少有一个小方格被染…
题目链接 那场完整的Div2(Div1 ABC)在这儿.. \(Description\) 给定\(n(n\leq 10^6)\),用三种颜色染有\(n\times n\)个格子的矩形,求至少有一行或一列格子同色的方案数. \(Solution\) 求恰好有多少行/列满足同色不好求,但如果某几行/列已经确定同色,这些行/列外任意选择,即至少多少行/列满足,那么很好求. 容斥.设\(f(i,j)\)表示至少有\(i\)行\(j\)列同色的方案数,则\(ans=\sum_{0\leq i\leq n…
点此看题面 大致题意: 有\(n\)个糖果和\(n\)个药片,各有自己的能量.将其两两配对,求糖果比药片能量大的组数恰好比药片比糖果能量大的组数多\(k\)组的方案数. 什么是广义容斥(二项式反演) 我们首先来介绍一下什么是广义容斥. 我们要证明下面这样一个式子: \[f_n=\sum_{i=0}^nC_n^ig_i⇔g_n=\sum_{i=0}^n(-1)^{n-i}C_{n}^if_i\] 观察右边这个式子,我们将\(f_n=\sum_{i=0}^nC_n^ig_i\)代入就可以得到: \[…
点此看题面 大致题意: 有一个\(n*m\)的矩形,先让你用\(C\)种颜色给它染色.每个格子可染色可不染色,但要求每行每列至少有一个小方格被染色,且每种颜色至少出现一次.求方案数. 高维容斥 显然题目中给你\(3\)个条件,而我们要一起容斥,所以就是高维容斥... 通过高维容斥,我们可以得到这样一个式子: \[\sum_{i=0}^n(-1)^{n-i}C_n^i\sum_{j=0}^m(-1)^{m-j}C_m^j\sum_{k=0}^c(-1)^{c-k}C_c^k(k+1)^{ij}\]…
传送门 思路 非常显然,就是要统计有多少种方式使得奇数的个数不超过\(n-2m\).(考场上这个都没想到真是身败名裂了--) 考虑直接减去钦点\(n-2m+1\)个奇数之后的方案数,但显然这样会算重,所以考虑容斥. 设\(f_k\)表示至少有\(k\)个为奇数的方案数. 那么有 \[ \begin{align*} f_k&={D\choose k}{n!}[x^n](\frac{e^x-e^{-x}}{2})^k e^{(D-k)x}\\ &={D\choose k}\frac{1}{2^…
这里有 Min-Max 容斥的证明以及唯一一道博主做过的例题... 上个结论: \[Min\{S\}=\sum_{T\subseteq S,T\not=\varnothing}(-1)^{|T|-1}Max\{T\} \] \[Max\{S\}=\sum_{T\subseteq S,T\not=\varnothing}(-1)^{|T|-1}Min\{T\} \] 具体的证明其实很简单...我们考虑证明其中一个(以第一个为例),另一个可以用类似证法得到结论.咱直接考虑集合内元素不重的情况,因为相…
[题解][HAOI2018]染色(NTT+容斥/二项式反演) 可以直接写出式子: \[ f(x)={m \choose x}n!{(\dfrac 1 {(Sx)!})}^x(m-x)^{n-Sx}\dfrac 1 {(n-Sx)!} \] \(f(x)\) 钦定有\(x\)种颜色出现了恰好\(S\)的方案 然后推一下恰好有\(x\)种颜色出现了恰好\(S\)次的方案\(g(x)\) .推导在下下面. 最后的答案是\(\sum w_i g(i)\) 推导: 显然颜色种类不会超过\(L=\lfloo…
题目链接 解题思路: 容斥一下好久可以得到式子 \(\sum_{i=0}^{n}\sum_{j=0}^{n}(-1)^{i+j}C_n^iC_n^j(k-1)^{ni+nj-ij}k^{n^2-(ni+nj-ij)}\)复杂度是\(o(n^2logn)\)但是还能继续化简, \(\sum_{i=0}^{n}\sum_{j=0}^{n}(-1)^{i+j}C_n^iC_n^j(k-1)^{ni+nj-ij}k^{n^2-(ni+nj-ij)}\) \(=\sum_{i=0}^{n}(-1)^iC_…
LINK:XOR 一个不常见的容斥套路题. 以往是只求三角形面积的交 现在需要求被奇数次覆盖的区域的面积. 打住 求三角形面积的交我也不会写 不过这道题的三角形非常特殊 等腰直角 且直角点都在左下方 这就有很多的性质了. 容易发现最后交出的三角形为等腰直角三角形. 考虑如何求若干个三角形交出的面积 不太会证明 题解区的一个神仙给出了一个式子. 设 \(c_i=x_i+y_i+z_i\)最终交出的三角形的直角边边长为 \(MAX(0,min(c_i)-max(x_i)-max(y_i))\) 数据…
二项式反演 \[f_n=\sum\limits_{i=0}^nC^i_ng_i \Leftrightarrow g_n=\sum\limits_{i=0}^n{(-1)}^{n-i}f_i \] 证明: 容斥原理 \[|A_1 \cup A_2\cup\cdots\cup A_n|=\sum\limits_{1\le i\le n}|A_i|-\sum\limits_{1\le i<j\le n}|A_i\cap A_j|+\cdots+(-1)^{n-1}\times |A_1\cap A_2…
vjudge 题面传送门 首先我们知道斐波那契数列的 lcm 是不太容易计算的,但是它们的 gcd 非常容易计算--\(\gcd(f_x,f_y)=f_{\gcd(x,y)}\),该性质已在我的这篇博客中给出了详细证明,这里就不再赘述了. 考虑怎样将 LCM 转化为 gcd,注意到有个东西叫 Min-Max 容斥,即对于集合 \(S\),\(\max(S)=\sum\limits_{\varnothing\ne T\subseteq S}(-1)^{|T|+1}\min(T)\),该性质同样可以…
知识点简单总结--minmax容斥 minmax容斥 好像也有个叫法叫最值反演? 就是这样的一个柿子: \[max(S) = \sum\limits_{ T \subseteq S } min(T) \times (-1)^{|T|-1} \] 用 $ Max $ 来求 $ Min $ 也一样可行. 证明不太难,所以干脆咕了,随便找个证明. 应用 由于期望的线性性,以上公式对于每个元素的期望也是成立的, 可以写作 $ E( max(S) ) = \sum\limits_{T \subseteq…
  题意:规定每次跳的单位 a1, a2, a3 …… , an, M,次数可以为b1, b2, b3 …… bn, bn + 1, 正好表示往左,负号表示往右, 求能否调到左边一位,即 a1* b1+ a2 * b2 + a3 * b3 + …… + m * (bn + 1) = 1; 根据欧几里得,则a1, a2 a3 …… an, m 最大公约数为1,m已知且a1, a2, a3 …… an 均小于等于m, 一共有m ^ n可能, 将m 唯一分解之后, 假设m = 2 * 3 * 5, 则…
#include <iostream> #include <cstring> #include <cstdio> #include <algorithm> #define LL long long using namespace std; ; ; LL Factor[],cnt,n,m,tot,Rev,Kase,Prime[Maxn]; bool vis[Maxn]; inline LL Quick_Pow(LL x,LL y) { LL Ret=; whi…
题意:有N(1<=N<=20)张卡片,每包中含有这些卡片的概率,每包至多一张卡片,可能没有卡片.求需要买多少包才能拿到所以的N张卡片,求次数的期望. 析:期望DP,是很容易看出来的,然后由于得到每张卡片的状态不知道,所以用状态压缩,dp[i] 表示这个状态时,要全部收齐卡片的期望. 由于有可能是什么也没有,所以我们要特殊判断一下.然后就和剩下的就简单了. 另一个方法就是状态压缩+容斥,同样每个状态表示收集的状态,由于每张卡都是独立,所以,每个卡片的期望就是1.0/p,然后要做的就是要去重,既然…
4455: [Zjoi2016]小星星 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 204  Solved: 137[Submit][Status][Discuss] Description 小Y是一个心灵手巧的女孩子,她喜欢手工制作一些小饰品.她有n颗小星星,用m条彩色的细线串了起来,每条细线连着两颗小星星.有一天她发现,她的饰品被破坏了,很多细线都被拆掉了.这个饰品只剩下了n?1条细线,但通过这些细线,这颗小星星还是被串在一起,也就是这些小…
C. Mike and Foam time limit per test 2 seconds memory limit per test 256 megabytes input standard input output standard output Mike is a bartender at Rico's bar. At Rico's, they put beer glasses in a special shelf. There are n kinds of beer at Rico's…
题目 Source http://acm.hust.edu.cn/vjudge/problem/42145 Description Let’s assume there is a new chess piece named Super-rook. When placed at a cell of a chessboard, it attacks all the cells that belong to the same row or same column. Additionally it at…
题意: 求1000以下3或5的倍数之和. SOL: 暴模也是兹瓷的啊... 那么就想到了初赛悲催的滚粗...容斥忘了加上多减的数了... 然后对着题...T = 3*333*(1+333)/2 + 5*199*(1+199)/2 - 15*66*(1+66)/2 = 233168…
Problem Mountain 题目大意 给定一张n*m的地图,由 . 和 X 组成.要求给每个点一个1~n*m的数字(每个点不同),使得编号为X的点小于其周围的点,编号为.的点至少大于一个其周围的点.   n<=5 , m<=5. 解题分析 考虑从1~n*m,从小到大依次填数,则如果某个位置编号为X且该位置还未填数,那么其周围的点均不能填数. 令dp[i][j]表示填到第i个数,状态为j . 令X的个数为cnt,那么 j ∈[ 0 , 1<<cnt). 一种情况为第i个数填在…
hdu 5792 要找的无非就是一个上升的仅有两个的序列和一个下降的仅有两个的序列,按照容斥的思想,肯定就是所有的上升的乘以所有的下降的,然后再减去重复的情况. 先用树状数组求出lx[i](在第 i 个数左边的数中比它小的数的个数),ld[i](在第 i 个数左边的数中比它大的数的个数),rx[i](在第 i 个数右边的数中比它小的数的个数) ,rd[i](在第 i 个数右边的数中比它大的数的个数).然后重复的情况无非就是题目中a与c重合(rx[i]*rd[i]),a与d重合(rd[i]*ld[…
题意:从1....v这些数中找到c1个数不能被x整除,c2个数不能被y整除! 并且这c1个数和这c2个数没有相同的!给定c1, c2, x, y, 求最小的v的值! 思路: 二分+容斥,二分找到v的值,那么s1 = v/x是能被x整除的个数 s2 = v/y是能被y整除数的个数,s3 = v/lcm(x, y)是能被x,y的最小公倍数 整除的个数! 那么 v-s1>=c1 && v-s2>=c2 && v-s3>=c1+c2就是二分的条件! #includ…
Yada Number Problem Description: Every positive integer can be expressed by multiplication of prime integers. Duoxida says an integer is a yada number if the total amount of 2,3,5,7,11,13 in its prime factors is even. For instance, 18=2 * 3 * 3 is no…
How many integers can you find Time Limit: 12000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 4249    Accepted Submission(s): 1211 Problem Description   Now you get a number N, and a M-integers set, you shoul…
题目链接 1.对于简单的版本n<=500, ai<=50 直接暴力枚举两个点x,y,dfs求x与y的距离. 2.对于普通难度n<=10000,ai<=500 普通难度解法挺多 第一种,树形dp+LCA 比赛的时候,我猜测对于不为1的n个数,其中两两互质的对数不会很多,肯定达不到n^2 然后找出所有互质的对数,然后对为1的数进行特殊处理.(初略的估计了下,小于500的大概有50个质数,将n个数平均分到这些数中,最后大概有10000*50*200=10^7) 对所有的非1质数对,采用离…
题目链接:http://codeforces.com/gym/100548/attachments 有n个物品 m种颜色,要求你只用k种颜色,且相邻物品的颜色不能相同,问你有多少种方案. 从m种颜色选k种颜色有C(m, k)种方案,对于k种颜色方案为k*(k-1)^(n-1)种.但是C(m, k)*k*(k-1)^(n-1)方案包括了选k-1,k-2...,2种方案. 题目要求刚好k种颜色,所以这里想到用容斥. 但是要是直接C(m, k)*k*(k-1)^(n-1) - C(m, k-1)*(k…
GCD 题目连接: http://acm.hdu.edu.cn/showproblem.php?pid=1695 Description Given 5 integers: a, b, c, d, k, you're to find x in a...b, y in c...d that GCD(x, y) = k. GCD(x, y) means the greatest common divisor of x and y. Since the number of choices may be…
分析:转自http://blog.csdn.net/mengzhengnan/article/details/47031777 一点感想:其实这个题应该是可以想到的,但是赛场上并不会 dp[i]的定义很巧妙,容斥的思路也非常清晰 然后就是讨论lucas的用法,首先成立的条件是mod是素数 但是如果这个题mod很大,组合数取模感觉就不太可做了 我认为当mod很大时,n应该很小可以预处理,但是n很大时mod应该比较小,这样也可以预处理 如果n和mod都很大我就不会了.... 这个题在预处理的时候,同…
题意:给定n,m的矩阵,就是求稳定的骨牌完美覆盖,也就是相邻的两行或者两列都至少有一个骨牌 分析:第一步: 如果是单单求骨牌完美覆盖,请先去学基础的插头dp(其实也是基础的状压dp)骨牌覆盖 hihocoder有全套课程:骨牌覆盖(一, 二,三),状态压缩(二) 学好了以后,首先打一个预处理没有限制的表,由于赛后补题,我就没自己打,直接从网上粘的表 我的表来自:http://blog.csdn.net/u012015746/article/details/51971977 第二步: 这就是容斥的…