Codeforces348C - Subset Sums】的更多相关文章

Portal Description 给出长度为\(n(n\leq10^5)\)的序列\(\{a_n\}\)以及\(m(m\leq10^5)\)个下标集合\(\{S_m\}(\sum|S_i|\leq10^5)\),进行\(q(q\leq10^5)\)次操作: 询问下标属于集合\(S_k\)的所有数之和. 将下标属于集合\(S_k\)的所有数加\(x\). Solution 记\(N_0=\sqrt{\sum|S_i|}\). 我们把集合划分成轻集合与重集合,大小超过\(N_0\)的集合就是重集…
P1466 集合 Subset Sums 162通过 308提交 题目提供者该用户不存在 标签USACO 难度普及/提高- 提交  讨论  题解 最新讨论 暂时没有讨论 题目描述 对于从1到N (1 <= N <= 39) 的连续整数集合,能划分成两个子集合,且保证每个集合的数字和是相等的.举个例子,如果N=3,对于{1,2,3}能划分成两个子集合,每个子集合的所有数字和是相等的: {3} 和 {1,2} 这是唯一一种分法(交换集合位置被认为是同一种划分方案,因此不会增加划分方案总数) 如果N…
Special subset sums: meta-testing Let S(A) represent the sum of elements in set A of size n. We shall call it a special sum set if for any two non-empty disjoint subsets, B and C, the following properties are true: S(B) ≠ S(C); that is, sums of subse…
Special subset sums: testing Let S(A) represent the sum of elements in set A of size n. We shall call it a special sum set if for any two non-empty disjoint subsets, B and C, the following properties are true: S(B) ≠ S(C); that is, sums of subsets ca…
Special subset sums: optimum Let S(A) represent the sum of elements in set A of size n. We shall call it a special sum set if for any two non-empty disjoint subsets, B and C, the following properties are true: S(B) ≠ S(C); that is, sums of subsets ca…
C. Subset Sums time limit per test 3 seconds memory limit per test 256 megabytes input standard input output standard output You are given an array a1, a2, ..., an and m sets S1, S2, ..., Sm of indices of elements of this array. Let's denote Sk = {Sk…
题面:P1466 集合 Subset Sums 题解: dpsum=N*(N+1)/2;模型转化为求选若干个数,填满sum/2的空间的方案数,就是背包啦显然如果sum%2!=0是没有答案的,就特判掉F[i][j]表示对于前i个数,和为j的方案数F[0][0]=1;F[i][j]+=F[i-1][j-i] (j>=i)转化为for(int i=1;i<=N;i++) for(int j=sum/2;j>=i;j--) F[j]+=F[j-i];答案是F[sum/2]/2,因为真实题目要求是…
SUBSUMS - Subset Sums Given a sequence of N (1 ≤ N ≤ 34) numbers S1, ..., SN (-20,000,000 ≤ Si ≤ 20,000,000), determine how many subsets of S (including the empty one) have a sum between A and B (-500,000,000 ≤ A ≤ B ≤ 500,000,000), inclusive. Input…
题目描述 对于从1到N (1 <= N <= 39) 的连续整数集合,能划分成两个子集合,且保证每个集合的数字和是相等的.举个例子,如果N=3,对于{1,2,3}能划分成两个子集合,每个子集合的所有数字和是相等的: {3} 和 {1,2} 这是唯一一种分法(交换集合位置被认为是同一种划分方案,因此不会增加划分方案总数) 如果N=7,有四种方法能划分集合{1,2,3,4,5,6,7},每一种分法的子集合各数字和是相等的: {1,6,7} 和 {2,3,4,5} {注 1+6+7=2+3+4+5}…
N (1 <= N <= 39),问有多少种把1到N划分为两个集合的方法使得两个集合的和相等. 如果总和为奇数,那么就是0种划分方案.否则用dp做. dp[i][j]表示前 i 个数划分到一个集合里,和为j的方法数. dp[i][j]=dp[i-1][j]+dp[i][j-i] n 为 39 时,1 到 39 的和为 780,枚举 j 的时候枚举到 s/2,最后输出dp[n][s/2]/2. http://train.usaco.org/usacoprob2?a=z5hb7MFUmsX&…
dp题,一碰到dp我基本就是跪,搜了网上的答案分两种,一维和二维. 先讲二维,sum[i][j]表示前i个数的subset里差值为j的分法数量.当加入数字i时,有两种选择,某一个set和另外一个set,当加入其中一个总和大的set时,新的差值为j+i,当加入一个总和小的set时,新的差值为abs(j-i). /* ID: yingzho1 LANG: C++ TASK: subset */ #include <iostream> #include <fstream> #includ…
subset解题报告------------------------------------------------------------------------------------------------------------------------------------------------[题目] 把1~N分成两组,让他们的和相等,请问这样的分组有多少种? 但顺序可以颠倒,比如{3}.{2,1}和{2,1}.{3}算作一种.[数据范围] 1<=N<=39[输入样例] 7[输出…
链接 分析:dp[i][j]表示前i个数能够组成j的对数,可得dp[i][j]=dp[i-1][j]+dp[i-1][j-i],所以最后dp[n][sum/2]既是所求 /* PROB:subset ID:wanghan LANG:C++ */ #include "iostream" #include "cstdio" #include "cstring" #include "string" using namespace s…
Description 对于从1到N的连续整集合,能划分成两个子集合,且保证每个集合的数字和是相等的.举个例子,如果N=3,对于{1,2,3}能划分成两个子集合,他们每个的所有数字和是相等的: {3} and {1,2} 这是唯一一种分法(交换集合位置被认为是同一种划分方案,因此不会增加划分方案总数)如果N=7,有四种方法能划分集合{1,2,3,4,5,6,7},每一种分发的子集合各数字和是相等的: {1,6,7} and {2,3,4,5} {注 1+6+7=2+3+4+5} {2,5,7}…
题目链接:https://www.luogu.org/problem/show?pid=1466 题目大意:对于从1到N (1 <= N <= 39) 的连续整数集合,能划分成两个子集合,且保证每个集合的数字和是相等的.举个例子,如果N=3,对于{1,2,3}能划分成两个子集合,每个子集合的所有数字和是相等的:{3} 和 {1,2}. 解题思路:01背包问题,设sum是1~n之和,其实就是求用数字1~n凑出sum/2的方案数(每个数字只能用一次),概括为以下几点: ①sum为奇数不能平分,直接…
题目描述 对于从1到N (1 <= N <= 39) 的连续整数集合,能划分成两个子集合,且保证每个集合的数字和是相等的.举个例子,如果N=3,对于{1,2,3}能划分成两个子集合,每个子集合的所有数字和是相等的: {3} 和 {1,2} 这是唯一一种分法(交换集合位置被认为是同一种划分方案,因此不会增加划分方案总数) 如果N=7,有四种方法能划分集合{1,2,3,4,5,6,7},每一种分法的子集合各数字和是相等的: {1,6,7} 和 {2,3,4,5} {注 1+6+7=2+3+4+5}…
题意思路:https://www.cnblogs.com/jianrenfang/p/6502858.html 第一次见这种思路,对于集合大小分为两种类型,一种是重集合,一种是轻集合,对于重集合,我们维护这个集合加上的和,已经集合的和.对于轻集合,我们直接暴力在序列上加上和,以及把这种加和对重集合的影响加上. 代码: #include <bits/stdc++.h> #define LL long long using namespace std; const int maxn = 10001…
题目描述 对于从1到N (1 <= N <= 39) 的连续整数集合,能划分成两个子集合,且保证每个集合的数字和是相等的.举个例子,如果N=3,对于{1,2,3}能划分成两个子集合,每个子集合的所有数字和是相等的: {3} 和 {1,2} 这是唯一一种分法(交换集合位置被认为是同一种划分方案,因此不会增加划分方案总数) 如果N=7,有四种方法能划分集合{1,2,3,4,5,6,7},每一种分法的子集合各数字和是相等的: {1,6,7} 和 {2,3,4,5} {注 1+6+7=2+3+4+5}…
题面传送门 对于这类不好直接维护的数据结构,第一眼应该想到-- 根号分治! 我们考虑记[大集合]为大小 \(\geq\sqrt{n}\) 的集合,[小集合]为大小 \(<\sqrt{n}\) 的集合. 显然,查询/修改小集合的时候,直接暴力跑一遍不会出问题,时间复杂度 \(\mathcal O(n\sqrt{n})\). 关键在于怎样处理[大集合]: 修改大集合的时候,暴力一个一个元素修改显然不行,于是考虑整体打一个 \(+v\) 的标记 \(tag_x\) 查询大集合的时候我们也不能遍历一遍集…
题目传送门 设 \(sum=1+2+3+4+\dots+n=\dfrac{n(n+1)}{2}\). 如果 \(2\nmid sum\),则显然没有方案. 如果 \(2\mid sum\),则这两个集合的和必为 \(\dfrac{sum}{2}\). 将 \(\dfrac{sum}{2}\) 作为容量跑 0-1 背包即可. Code: #include<iostream> using namespace std; const int N=45,SUM=785; typedef long lon…
好吧,因为USACO挂掉了,所以我写的所有代码都不保证正确性[好的,这么简单的题,再不写对,你就可以滚粗了! 第一题是USACO 2.2.2 ★Subset Sums 集合  对于从 1 到 N 的连续整集合合,能划分成两个子集合,且保证每个集合的数字和是相等的.  举个例子,如果 N=3,对于{1,2,3}能划分成两个子集合,他们每个的所有数字和是相等的:  {3} and {1,2}  26 这是唯一一种分发(交换集合位置被认为是同一种划分方案,因此不会增加划分方案总数)  如果 N=7,有…
贪心 B. Color the Fence time limit per test 2 seconds memory limit per test 256 megabytes input standard input output standard output Igor has fallen in love with Tanya. Now Igor wants to show his feelings and write a number on the fence opposite to Ta…
题目 1 P1832 A+B Problem(再升级) 题面描述 给定一个正整数n,求将其分解成若干个素数之和的方案总数. 题解 我们可以考虑背包DP实现 背包DP方案数板子题 f[ i ] = f[ i ] + f[ i - a[j] ] f[ j ] 表示数字 j 用若干个素数表示的方案总数 注意 1.线性筛不要写错: 1)not_prime[maxn] maxn>=n   2)memset not_prime 数组之后,0,1初始化不是素数 2.方案数 DP 数组要开 long long…
Mahesh and his lost array   Problem code: ANUMLA   Submit All Submissions   All submissions for this problem are available. Read problems statements in Mandarin Chinese and Russian as well. Mahesh got a beautiful array named A as a birthday gift from…
PROBLEM D - Round Subset 题 OvO http://codeforces.com/contest/837/problem/D 837D 解 DP, dp[i][j]代表已经选择了i个元素,当2的个数为j的时候5的个数的最大值 得注意最大值(貌似因为这个喵呜了一大片喵~☆) #include <iostream> #include <cstring> #include <cstdio> #include <cmath> #include…
https://en.wikipedia.org/wiki/Subset_sum_problem In computer science, the subset sum problem is an important problem in complexity theory and cryptography. The problem is this: given a set (or multiset) of integers, is there a non-empty subset whose…
Rikka with Subset Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total Submission(s): 1846    Accepted Submission(s): 896 Problem Description As we know, Rikka is poor at math. Yuta is worrying about this situation…
Rikka with Subset Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total Submission(s): 837    Accepted Submission(s): 411 Problem Description As we know, Rikka is poor at math. Yuta is worrying about this situation,…
As we know, Rikka is poor at math. Yuta is worrying about this situation, so he gives Rikka some math tasks to practice. There is one of them: Yuta has nn positive A1−AnA1−An and their sum is mm. Then for each subset SS of AA, Yuta calculates the sum…
Problem Description As we know, Rikka is poor at math. Yuta is worrying about this situation, so he gives Rikka some math tasks to practice. There is one of them: Yuta has n positive A1−An and their sum is m. Then for each subset S of A, Yuta calcula…