矩阵SVD 奇异值分解(Singular Value Decomposition)是一种重要的矩阵分解方法,可以看做是对方阵在任意矩阵上的推广.Singular的意思是突出的,奇特的,非凡的,按照这样的翻译似乎也可以叫做矩阵的优值分解. 假设矩阵A是一个m*n阶的实矩阵,则存在一个分解使得: 其中,是一个对角阵,只有对角线上面有元素,对角先上面的元素称为矩阵A的奇异值,通常将其进行从大到小排列,在numpy中的api返回的是一个奇异值的向量,我们可以将其转换为对角阵.U和V都是单位正交阵,U和V…
矩阵的奇异值分解(Singular Value Decomposition,SVD)是数值计算中的精彩之处,在其它数学领域和机器学习领域得到了广泛的应用,如矩阵的广义逆,主分成分析(PCA),自然语言处理(NLP)中的潜在语义索引(Latent Semantic Indexing),推荐算法等. 鉴于实际应用,本次分享中的数域为实数域,即我们只在实数范围内讨论.我们假定读者具有大学线性代数的水平.那么,矩阵的奇异值分解定理如下: (定理)(奇异值分解定理)任意一个$m \times n$矩阵A可…
用 GSL 求解超定方程组及矩阵的奇异值分解(SVD) 最近在学习高动态图像(HDR)合成的算法,其中需要求解一个超定方程组,因此花了点时间研究了一下如何用 GSL 来解决这个问题. GSL 里是有最小二乘法拟合(Least-Squares Fitting)的相关算法,这些算法的声明在 gsl_fit.h 中,所以直接用 GSL 提供的 gsl_fit_linear 函数就能解决这个问题.不过我想顺便多学习一些有关 SVD 的知识.所以就没直接使用 gsl_fit_linear 函数. SVD…
Python 矩阵(线性代数) 这里有一份新手友好的线性代数笔记,是和深度学习花书配套,还被Ian Goodfellow老师翻了牌. 笔记来自巴黎高等师范学院的博士生Hadrien Jean,是针对"花书"的线性代数一章,初来乍到的小伙伴可以在笔记的辅佐之下,了解深度学习最常用的数学理论,加以轻松的支配. 把理论和代码搭配食用,疗效更好.笔记里列举的各种例子,可以帮初学者用一种更直观实用的方式学好线代.开始前,你需要准备好Numpy和Python. 然后来看一下,要走怎样一个疗程--…
< python PIL - 批量图像处理 - RGB图像生成灰度图像 > 直接用python自带的PIL图像库,将一个文件夹下所有jpg/png的RGB图像转换成灰度/黑白图像 from PIL import Image import os.path import glob def convertjpg(jpgfile,outdir): try: image_file = Image.open(jpgfile) # open colour image image_file = image_f…
接上一篇... 下面我们将 SVD 相关的功能封装成一个类,以方便我们提取 S 和 V 的值. 另外,当我们一个 A 有多组 x 需要求解时,也只需要计算一次 SVD 分解,用下面的类能减少很多计算量. 头文件如下: #ifndef GSLSINGULARVALUEDECOMPOSITION_H #define GSLSINGULARVALUEDECOMPOSITION_H #include <gsl/gsl_matrix.h> #include <gsl/gsl_vector.h>…
介绍一下奇异值分解来压缩图像.今年的上半年中的一篇博客贴了一篇用奇异值分解处理pca问题的程序,当时用的是图像序列,是把图像序列中的不同部分分离开来.这里是用的不是图像序列了,只是单单的一幅图像,所以直接就对图像矩阵进行svd了. 吴军的<数学之美>里其实已经介绍过用svd进行大数据的压缩了,不过我这里还是针对图像进行介绍一下吧.比如一幅1000*1000的图像A,存储就需要1000000个像素了.我们对A进行svd分解,则A=USV’,如果rank(A)=r,那么U就为1000*r的矩阵,S…
原文地址:http://blog.csdn.net/sunny2038/article/details/9057415 转载请详细注明原作者及出处,谢谢! 本文是OpenCV  2 Computer Vision Application Programming Cookbook读书笔记的第一篇.在笔记中将以Python语言改写每章的代码. PythonOpenCV的配置这里就不介绍了. 注意,现在OpenCV for Python就是通过NumPy进行绑定的.所以在使用时必须掌握一些NumPy的…
Python 图像库(Python Image Library,PIL)为 Python 提供了图像处理能力. PIL 官网:http://www.pythonware.com/products/pil/ PIL 在线手册:http://www.pythonware.com/library/pil/handbook/index.htm pillow 是 PIL 的一个派生分支,更加活跃. pillow  的 github 主页:https://github.com/python-pillow/P…
一.矩阵生成 1.numpy.matrix: import numpy as np x = np.matrix([ [1, 2, 3],[4, 5, 6] ]) y = np.matrix( [1, 2, 3, 4, 5, 6]) print(x, y, x[0, 0], sep='\n\n') matrix([[1, 2, 3] [4, 5, 6]]) [[1 2 3 4 5 6]] 1 [[1 2 3]] 2.numpy.matlib.empty( shape, dtype, order)…