R语言-推荐系统】的更多相关文章

一.概述 目的:使用推荐系统可以给用户推荐更好的商品和服务,使得产品的利润更高 算法:协同过滤 协同过滤是推荐系统最常见的算法之一,算法适用用户过去的购买记录和偏好进行推荐 基于商品的协同过滤(IBCF计算每个商品之间的相似度矩阵): 1.任意两个商品计算相似度 2.每一个商品找出其k个最相似的商品 3.每一个用户找出那些商品与其之前购买的商品最接近的商品 基于用户的协同过滤(UBCF计算用户之间的相似度矩阵): 1.计算每个用户与用户之间的相似度,通常使用皮尔森相关系数和余弦距离 2.找出最相…
R语言实战实现基于用户的简单的推荐系统(数量较少) a<-c(1,1,1,1,2,2,2,2,3,3,3,4,4,4,5,5,5,5,6,6,7,7) b<-c(1,2,3,4,2,3,4,5,4,1,2,3,2,4,5,2,6,4,1,2,3,4) da<-data.frame(a,b) a<-c(1,1,2,2,3,3,3,3,3,4,4,5,5,5,6,6,7,7) b<-c(2,5,7,2,6,4,7,1,8,6,3,3,4,1,2,4,4,9) da2<-da…
现在对R感兴趣的人越来越多,很多人都想快速的掌握R语言,然而,由于目前大部分高校都没有开设R语言课程,这就导致很多人不知道如何着手学习R语言. 对于初学R语言的人,最常见的方式是:遇到不会的地方,就跑到论坛上吼一嗓子,然后欣然or悲伤的离去,一直到遇到下一个问题再回来.当然,这不是最好的学习方式,最好的方式是——看书.目前,市面上介绍R语言的书籍很多,中文英文都有.那么,众多书籍中,一个生手应该从哪一本着手呢?入门之后如何才能把自己练就成某个方面的高手呢?相信这是很多人心中的疑问.有这种疑问的人…
R 语言的优劣势是什么? 2015-05-27 程序员 大数据小分析   R,不仅仅是一种语言 本文原载于<程序员>杂志2010年第8期,因篇幅所限,有所删减,这里刊登的是全文. 工欲善其事,必先利其器,作为一个战斗在IT界第一线的工程师,C/C++.java.perl.python.ruby.php.javascript.erlang等等等等,你手中总有一把使用自如的刀,帮助你披荆斩棘. 应用场景决定知识的储备与工具的选择,反过来,无论你选择了什么样的工具,你一定会努力地把它改造成符合自己应…
每每以为攀得众山小,可.每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~ --------------------------- 社群划分跟聚类差不多,参照<R语言与网站分析>第九章,社群结构特点:社群内边密度要高于社群间边密度,社群内部连接相对紧密,各个社群之间连接相对稀疏. 社群发现有五种模型:点连接.随机游走.自旋玻璃.中间中心度.标签发现. 评价社群三个指标:模块化指标Q.网络聚类系数.网络密度. 画图有三种方法:直接plot.书中自编译函数.SVG. ----…
欢迎大家前往腾讯云+社区,获取更多腾讯海量技术实践干货哦~ 协同过滤算法是推荐系统最常用的算法之一,本文将介绍一种方法来使它可以在大型数据集上快速训练. 协同过滤算法(CF)是构建推荐系统时最常用的技术之一.它可以基于收集到的其他用户的偏好信息(协同)来自动地预测当前用户的兴趣点.协同过滤算法主要分为两种:基于记忆(memory-based)的协同过滤算法和基于模型(model-based)的协同过滤算法.一般来说,将两者融合可以获得预测准确度上的提升. 在本文中,我们将关注基于记忆的协同过滤算…
[怪毛匠子整理] 1.下载 wget http://mirror.bjtu.edu.cn/cran/src/base/R-3/R-3.0.1.tar.gz 2.解压: tar -zxvf R-3.0.1.tar.gz cd R-3.0.1 3.安装 yum install readline-devel yum install libXt-devel ./configure 如果使用rJava需要加上 --enable-R-shlib ./configure  --enable-R-shlib -…
R语言:recommenderlab包的总结与应用案例   1. 推荐系统:recommenderlab包整体思路 recommenderlab包提供了一个可以用评分数据和0-1数据来发展和测试推荐算法的框架.它提供了几种基础算法,并可利用注册机制允许用户使用自己的算法recommender包的数据类型采用S4类构造. (1)评分矩阵数据接口:使用抽象的raringMatrix为评分数据提供接口.raringMatrix采用了很多类似矩阵对象的操作,如 dim(),dimnames() ,row…
K近邻算法(KNN)是指一个样本如果在特征空间中的K个最相邻的样本中的大多数属于某一个类别,则该样本也属于这个类别,并具有这个类别上样本的特性.即每个样本都可以用它最接近的k个邻居来代表.KNN算法适合分类,也适合回归.KNN算法广泛应用在推荐系统.语义搜索.异常检测. KNN算法分类原理图: 图中绿色的圆点是归属在红色三角还是蓝色方块一类?如果K=5(离绿色圆点最近的5个邻居,虚线圈内),则有3个蓝色方块是绿色圆点的“最近邻居”,比例为3/5,因此绿色圆点应当划归到蓝色方块一类:如果K=3(离…
R语言网络爬虫初学者指南(使用rvest包) 钱亦欣 发表于 今年 06-04 14:50   5228 阅读   作者 SAURAV KAUSHIK 译者 钱亦欣 引言 网上的数据和信息无穷无尽,如今人人都用百度谷歌来作为获取知识,了解新鲜事物的首要信息源.所有的这些网上的信息都是直接可得的,而为了满足日益增长的数据需求,我坚信网络数据爬取已经是每个数据科学家的必备技能了.在本文的帮助下,你将会突破网络爬虫的技术壁垒,实现从不会到会. 大部分网上呈现的信息都是以非结构化的格式存储(html)且…