本文转自:谷歌工程师:聊一聊深度学习的weight initialization TLDR (or the take-away) Weight Initialization matters!!! 深度学习中的weight initialization对模型收敛速度和模型质量有重要影响! 在ReLU activation function中推荐使用Xavier Initialization的变种,暂且称之为He Initialization: 使用Batch Normalization Layer…
深度学习中的weight initialization对模型收敛速度和模型质量有重要影响! 在ReLU activation function中推荐使用Xavier Initialization的变种,暂且称之为He Initialization: import numpy as np W = np.random.randn(node_in, node_out) / np.sqrt(node_in / 2) 使用Batch Normalization Layer可以有效降低深度网络对weight…
转自: https://www.leiphone.com/news/201703/3qMp45aQtbxTdzmK.htmla https://blog.csdn.net/shuzfan/article/details/51338178  [原理推导] 背景 深度学习模型训练的过程本质是对weight(即参数 W)进行更新,这需要每个参数有相应的初始值.有人可能会说:“参数初始化有什么难点?直接将所有weight初始化为0或者初始化为随机数!”对一些简单的机器学习模型,或当optimizatio…
转载来源:http://blog.csdn.net/fengbingchun/article/details/50087005 这篇文章主要是为了对深度学习(DeepLearning)有个初步了解,算是一个科普文吧,文章中去除了复杂的公式和图表,主要内容包括深度学习概念.国内外研究现状.深度学习模型结构.深度学习训练算法.深度学习的优点.深度学习已有的应用.深度学习存在的问题及未来研究方向.深度学习开源软件. 一.            深度学习概念 深度学习(Deep Learning, DL…
前面我们学习过深度学习中用于加速网络训练.提升网络泛化能力的两种策略:Batch Normalization(Batch Normalization)和Layer Normalization(LN).今天讨论另一种与它们类似的策略:Weight Normalization(Weight Normalization).Weight Normalization是Batch Normalization的一种变体,与Batch Normalization最大不同点:对神经网络的权值向量W进行参数重写Re…
转载自:http://blog.csdn.net/zouxy09/article/details/8775360 感谢原作者:zouxy09@qq.com 八.Deep learning训练过程 8.1.传统神经网络的训练方法为什么不能用在深度神经网络 BP算法作为传统训练多层网络的典型算法,实际上对仅含几层网络,该训练方法就已经很不理想.深度结构(涉及多个非线性处理单元层)非凸目标代价函数中普遍存在的局部最小是训练困难的主要来源. BP算法存在的问题: (1)梯度越来越稀疏:从顶层越往下,误差…
转载:http://www.csdn.net/article/2014-07-10/2820600 人工智能被认为是下一个互联网大事件,当下,谷歌.微软.百度等知名的高科技公司争相投入资源,占领深度学习的技术制高点,百度在2014年5月19日宣布曾领导谷歌的深度学习项目——Google Brain ,被誉为谷歌大脑之父的Andrew Ng加盟百度,正式领导百度研究院工作,尤其是Baidu Brain计划.7月7日,他应邀做客中国科学院自动化研究所,发表了<Deep Learning:Overvi…
编者按:本文收集了百来篇关于机器学习和深度学习的资料,含各种文档,视频,源码等.而且原文也会不定期的更新,望看到文章的朋友能够学到更多. <Brief History of Machine Learning> 介绍:这是一篇介绍机器学习历史的文章,介绍很全面,从感知机.神经网络.决策树.SVM.Adaboost 到随机森林.Deep Learning. <Deep Learning in Neural Networks: An Overview> 介绍:这是瑞士人工智能实验室 Ju…
  全文转载于郭耀华-[深度学习]深入理解Batch Normalization批标准化:   文章链接Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift:发表于2015的ICML: 这几天面试经常被问到BN层的原理,虽然回答上来了,但还是感觉答得不是很好,今天仔细研究了一下Batch Normalization的原理,以下为参考网上几篇文章总结得出.   Bat…
之前研究的CRF算法,在中文分词,词性标注,语义分析中应用非常广泛.但是分词技术只是NLP的一个基础部分,在人机对话,机器翻译中,深度学习将大显身手.这篇文章,将展示深度学习的强大之处,区别于之前用符号来表示语义,深度学习用向量表达语义.这篇文章的最大价值在于,为初学者指明了研究方向.下面为转载的原文:   在深度学习出现之前,文字所包含的意思是通过人为设计的符号和结构传达给计算机的.本文讨论了深度学习如何用向量来表示语义,如何更灵活地表示向量,如何用向量编码的语义去完成翻译,以及有待改进的地方…