题目来源:NOI2019模拟测试赛(七) 非原题面,题意有略微区别 题意: 吐槽: 心态崩了. 好不容易场上想出一题正解,写了三个小时结果写了个假的点分治,卡成$O(n^2)$ 我退役吧. 题解: 原题是求随机树分治的期望深度和,题意相同. 对于一个点$x$,考虑点$y$是否能作为它在点分树上的祖先节点,显然当且仅当$y$在$x$到$y$的路径中第一个被选为分治中心时会对$x$产生1的贡献: 由于路径上所有点被选到的概率都是相等的,所以此时的期望就是$\frac{1}{dis(x,y)}$: 那…