4784: [Zjoi2017]仙人掌 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 312  Solved: 181[Submit][Status][Discuss] Description 如果一个无自环无重边无向连通图的任意一条边最多属于一个简单环,我们就称之为仙人掌.所谓简单环即不经过 重复的结点的环. 现在九条可怜手上有一张无自环无重边的无向连通图,但是她觉得这张图中的边数太少了,所以她想要在图上连上 一些新的边.同时为了方便的存储这张…
传送门 题意:给一个无向连通图,问给它加边形成仙人掌的方案数. 思路: 先考虑给一棵树加边形成仙人掌的方案数. 这个显然可以做树形dp. fif_ifi​表示把iii为根的子树加边形成仙人掌的方案数. 然后有两种情况: iii点没有父亲 iii点有父亲 对于第一种情况即iii是树根的情况,显然fi=(∏fv)∗g∣sonp∣f_i=(\prod f_v)*g_{|son_p|}fi​=(∏fv​)∗g∣sonp​∣​,其中gig_igi​表示给iii个儿子两两配对(每个儿子可配可不配的方案数).…
首先考虑是棵树的话怎么做.可以发现相当于在树上选择一些长度>=2的路径使其没有交,同时也就相当于用一些没有交的路径覆盖整棵树. 那么设f[i]为覆盖i子树的方案数.转移时考虑包含根的路径.注意到每条跨根的路径都是由两条子树内到根的路径组成,只需要先统计出所有路径不跨根的方案数,再乘上包含根的路径的配对方案数就行了.既然路径不跨根,对于每棵子树可以独立计算再乘起来.冷静一下发现计算单棵子树的方案数还需要知道子树内可以向上延伸的路径的数量,那么不妨令f[i]改为表示用不跨根的路径覆盖i子树的方案数,…
Description 如果一个无自环无重边无向连通图的任意一条边最多属于一个简单环,我们就称之为仙人掌.所谓简单环即不经过重复的结点的环. 现在九条可怜手上有一张无自环无重边的无向连通图,但是她觉得这张图中的边数太少了,所以她想要在图上连上一些新的边.同时为了方便的存储这张无向图,图中的边数又不能太多.经过权衡,她想要加边后得到的图为一棵仙人掌.不难发现合法的加边方案有很多,可怜想要知道总共有多少不同的加边方案.两个加边方案是不同的当且仅当一个方案中存在一条另一个方案中没有的边. Input…
[BZOJ4784][ZJOI2017]仙人掌(Tarjan,动态规划) 题面 BZOJ 洛谷 题解 显然如果原图不是仙人掌就无解. 如果原图是仙人掌,显然就是把环上的边给去掉,变成若干森林连边成为仙人掌的方案数. 那么对于一棵树而言,考虑其变成仙人掌的方案数. 设\(a_i\)表示匹配\(i\)个儿子的方案数,显然转移时\(a_i=a_{i-1}+(i-1)*a_{i-2}\),即考虑新加入的儿子是匹配另外一个儿子还是不管. 设\(f_u\)表示节点\(u\)的子树匹配成仙人掌的方案数,这里要…
[BZOJ4316]小C的独立集(仙人掌,动态规划) 题面 BZOJ 题解 除了普通的动态规划以外,这题还可以用仙人掌的做法来做. 这里没有必要把圆方树给建立出来 \(Tarjan\)的本质其实就是一个构建\(dfs\)树的过程 所以我们在\(Tarjan\)的过程中求解就行了 我们设\(f[i][0/1]\)表示当前节点为\(i\),选或不选的子树的最大独立集 当一条边是树边的时候,转移和树上的转移相同. 否则暂时不转移. 当我们做完当前点,发现它是一个环的最顶端的时候,我们需要重新对于这个环…
[BZOJ1023]仙人掌图(仙人掌,动态规划) 题面 BZOJ 求仙人掌的直径(两点之间最短路径最大值) 题解 一开始看错题了,以为是求仙人掌中的最长路径... 后来发现看错题了一下就改过来了.. 首先和普通的仙人掌\(dp\)是一样的, 对于没有问题的圆圆边,直接做最长链的转移(同时更新\(ans\)) 然后对于一个环,把它拎出来单独考虑 首先要对于这个环,计算能够贡献的答案, 然后再用环上的值更新环的最顶点 先考虑怎么更新,这个直接拿环上的点的\(dp\)值,再计算一下这两点之间的最短路(…
原文链接https://www.cnblogs.com/zhouzhendong/p/UOJ290.html 题解 真是一道好题! 首先,如果不是仙人掌直接输出 0 . 否则,显然先把环上的边删光. 问题转化成多个树求解,把答案乘起来即可. 现在我们考虑如何求一个树的答案. 再转化一下题意可以变成选出若干条长度至少为 2 的路径使得它们两两没有交. 标算十分优美.放到后面讲. 我先讲讲我的sb做法. 我们先来看看暴力 dp 怎么做: 设 dp[x][i] 表示子树 x ,在 x 节点上还有 i…
其实挺简单的但是没想出来---- 首先判断无解情况,即,一开始的图就不是仙人掌,使用tarjan判断如果一个点dfs下去有超过一个点比他早,则说明存在非简单环. 然后考虑dp,显然原图中已经属于某个简单环的边就是没用的,tarjan缩点之后删掉两个端点在一个强连通分量中的边.(无向图的tarjan要记录father防止往回走,instack数组不需要了. 现在图变成了一个森林. 然后设sum为某个点的子树个数,w[i]为i棵子树相互连成环的方案数,w[i]=w[i-1]+w[i-2]*(i-1)…
Problem B: The Largest Clique Given a directed graph G, consider the following transformation. First, create a new graph T(G) to have the same vertex set as G. Create a directed edge between two vertices u and v in T(G) if and only if there is a path…