利用pandas自带的函数notnull可以很容易判断某一列是否为null类型,但是如果这一列中某一格为空字符串"",此时notnull函数会返回True,而一般我们选择非空行并不包括这一点,所以需要把这一类也去掉. # df为需要筛选的数据框,col为选择非空依赖的列 df = df[(df[col].notnull) & (df[col] != "")] 如果数据来源是MySQL数据库,用sql函数调用的时候也要注意相同的问题. SELECT col F…
1.用0替代数据框中的缺失值NA 生成数据框: > m <- matrix(sample(c(NA, :), , replace = TRUE), ) > d <- as.data.frame(m) V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 1 4 3 NA 3 7 6 6 10 6 5 2 9 8 9 5 10 NA 2 1 7 2 3 1 1 6 3 6 NA 1 4 1 6 4 NA 4 NA 7 10 2 NA 4 1 8 5 1 2 4 NA 2 6…
用R语言提取数据框中日期对应年份(列表转矩阵) 在数据处理中常会遇到要对数据框中的时间做聚类处理,如从"%m/%d/%Y"中提取年份. 对应操作为:拆分成列表——列表转矩阵——利用索引从矩阵中提取第一列—— year<-strsplit(case_data2$Date,split = "-") # strsplit函数将数据拆分成列表 year1<-]# 将列表转换为矩阵,提取第一列——年份 case_data2$year1<-year1 其他办法…
目录 1. 去掉指定列中包含NA/Inf/NaN的行 2. 去掉指定列中包含其他乱七八糟字符串的行 3. 去掉整个数据框中包含非数值的行 只包含NA.NaN和Inf的情况 针对其他字符情况 4. 总结下推荐用法 这个需求还是很常见的,因为我们在处理数据的时候无法全面考虑到数据框中含有哪些类型的数据,比如含有NA.NaN或Inf,甚至是一些乱七八糟的字符串.这时不论做统计分析还是作图,都会带来意想不到的错误.为防止这种现象发生,有必要在分析数据前将这些含有特殊字符的行去掉. 1. 去掉指定列中包含…
前言 近期在学习使用Hive(版本号0.13.1)的过程中,发现了一些坑,它们也许是Hive提倡的比关系数据库更加自由的体现(同一时候引来一些问题).也许是一些bug.总而言之,这些都须要使用Hive的开发者额外注意.本文旨在列举我发现的3个通过查询语句向表中插入数据过程中的问题,希望大家注意. 数据准备 为了验证接下来出现的问题,须要先准备两张表employees和staged_employees.并准备好測试数据.首先使用下面语句创建表employees: create table empl…
获取数据框的行.列数 # 获取行数 df.shape[0] # 获取行数 len(df) # 获取列数 df.shape[1]…
一.初识DataFrame dataFrame 是一个带有索引的二维数据结构,每列可以有自己的名字,并且可以有不同的数据类型.你可以把它想象成一个 excel 表格或者数据库中的一张表DataFrame是最常用的 Pandas 对象. 二.数据框的创建 1.字典套列表方式创建 index = pd.Index(data=["Tom", "Bob", "Mary", "James"], name="name"…
主要内容: 创建数据表 查看数据表 数据表索引.选取部分数据 通过标签选取.loc 多重索引选取 位置选取.iloc 布尔索引 Object Creation 新建数据 用list建series序列 In [73]: s = pd.Series([1,3,5,np.nan,6,8]) In [74]: s Out[74]: 0 1.0 1 3.0 2 5.0 3 NaN 4 6.0 5 8.0 dtype: float64 用numpy array建dataframe In [75]: date…
I would like to make a new data frame which only includes common rows of two separate data.frame. example: data.frame 1 1 id300 2 id2345 3 id5456 4 id33 5 id45 6 id54 data.frame2 1 id832 2 id300 3 id1000 4 id45 5 id984 6 id5456 7 id888 So I want my o…
二.merge:通过键拼接列 类似于关系型数据库的连接方式,可以根据一个或多个键将不同的DatFrame连接起来. 该函数的典型应用场景是,针对同一个主键存在两张不同字段的表,根据主键整合到一张表里面. merge(left, right, how='inner', on=None, left_on=None, right_on=None, left_index=False, right_index=False, sort=True, suffixes=('_x', '_y'), copy=Tr…