3D Face Reconstruction】的更多相关文章

方法1 Large Pose 3D Face Reconstruction from a Single Image via Direct Volumetric CNN Regression http://aaronsplace.co.uk/papers/jackson2017recon/ demo http://cvl-demos.cs.nott.ac.uk/vrn/index.php    原始图像                                               …
Large Pose 3D Face Reconstruction from a Single Image via Direct Volumetric CNN Regression 该文献采用一个新型的VRN网络对任意的面部姿势和表情的2D图片进行3D面部重建,并绕过3D可变模型的构造(在训练期间)和拟合(在测试期间). volumetric representation 文献中是通过CNN回归来预测3D面部的顶点,直接对所有的3D面部点进行预测的话不利于VRN的学习.该文献中将mesh转换为v…
简介:这是一篇17年的CVPR,作者提出使用现有的人脸识别深度神经网络Resnet101来得到一个具有鲁棒性的人脸模型. 原文链接:https://www.researchgate.net/publication/311668561_Regressing_Robust_and_Discriminative_3D_Morphable_Models_with_a_very_Deep_Neural_Network 摘要 主要说了两个部分:第一部分,三维人脸模型还没有广泛应用到人脸识别等领域,主要原因是…
Pushing state-of-the-art in 3D content understanding 2019-10-31 06:34:08 This blog is copied from: https://ai.facebook.com/blog/pushing-state-of-the-art-in-3d-content-understanding/ In order to interpret the world around us, AI systems must understan…
Abstract摘要 In this paper, a new technique for modeling textured 3D faces is introduced. 3D faces can either be generated automatically from one or more photographs, or modeled directly through an intuitive user interface. Users are assisted in two ke…
​蝶恋花·槛菊愁烟兰泣露 槛菊愁烟兰泣露,罗幕轻寒,燕子双飞去. 明月不谙离恨苦,斜光到晓穿朱户. 昨夜西风凋碧树,独上高楼,望尽天涯路. 欲寄彩笺兼尺素.山长水阔知何处? --晏殊 导读: 3D点云配准是计算机视觉的关键研究问题之一,在多领域工程应用中具有重要应用,如逆向工程.SLAM.图像处理和模式识别等.点云配准的目的是求解出同一坐标下不同姿态点云的变换矩阵,利用该矩阵实现多视扫描点云的精确配准,最终获取完整的3D数字模型.场景.本质上,关于六自由度(旋转和平移)的3D点云配准问题是典型的…
作者:Tom Hardy Date:2020-04-15 来源:CVPR2020文章汇总 | 点云处理.三维重建.姿态估计.SLAM.3D数据集等(12篇) 1.PVN3D: A Deep Point-wise 3D Keypoints Voting Network for 6DoF PoseEstimation 文章链接:https://arxiv.org/abs/1911.04231 代码链接:https://github.com/ethnhe/PVN3D 在这项工作中,论文提出了一种新的数…
3D重建算法原理 三维重建(3D Reconstruction)技术一直是计算机图形学和计算机视觉领域的一个热点课题.早期的三维重建技术通常以二维图像作为输入,重建出场景中的三维模型.但是,受限于输入的数据,重建出的三维模型通常不够完整,而且真实感较低.随着各种面向普通消费者的深度相机(depth camera)的出现,基于深度相机的三维扫描和重建技术得到了飞速发展.以微软的Kinect,华硕的XTion以及因特尔的RealSense等为代表的深度相机造价低廉,体积适当,操作方便,并且易于研究者…
3D点云重建原理及Pytorch实现 Pytorch: Learning Efficient Point Cloud Generation for Dense 3D Object Reconstruction 一种Pytorch实现方法:学习高效的点云生成方法用于稠密三维物体重建 Article: https://chenhsuanlin.bitbucket.io/3D-point-cloud-generation/paper.pdf Original TF implementation: ht…
In the 1960s, the legendary Stanford artificial intelligence pioneer, John McCarthy, famously gave a graduate student the job of “solving” computer vision as a summer project. It has occupied an entire community of academic researchers for the past 4…
This article come from HEREARS-L1: Learning Tuesday 10:30–12:30; Oral Session; Room: Leonard de Vinci 10:30  ARS-L1.1—GROUP STRUCTURED DIRTY DICTIONARY LEARNING FOR CLASSIFICATION Yuanming Suo, Minh Dao, Trac Tran, Johns Hopkins University, USA; Hojj…
      首页 视界智尚 算法技术 每日技术 来打我呀 注册     实时SLAM的未来及与深度学习的比较 The Future of Real-Time SLAM and “Deep Learning vs SLAM”   Last month’s International Conference of Computer Vision (ICCV) was full of Deep Learning techniques, but before we declare an all-out C…
Participate in Reproducible Research General Image Processing OpenCV (C/C++ code, BSD lic) Image manipulation, matrix manipulation, transforms Torch3Vision (C/C++ code, BSD lic) Basic image processing, matrix manipulation and feature extraction algor…
3D面部重建是一个非常困难的基本计算机视觉问题.目前的系统通常假设多个面部图像(有时来自同一主题)作为输入的可用性,并且必须解决许多方法学挑战,例如在大的面部姿势,表情和不均匀照明之间建立密集的对应.一般来说,这些方法需要复杂和低效的管道来建模和拟合.在这项工作中,我们提出通过在由2D图像和3D面部模型或扫描组成的适当数据集上训练卷积神经网络(CNN)来解决许多这些限制.我们的CNN只使用一个2D面部图像,不需要精确的对准,也不会形成图像之间的密集对应,适用于任意面部姿势和表情,并可用于重建整个…
这里翻译下<Deep face recognition: a survey v4>. 1 引言 由于它的非侵入性和自然特征,人脸识别已经成为身份识别中重要的生物认证技术,也已经应用到许多领域,如军事,进入,公共安全和日常生活.FR自然在CVPR会议中也占据了十分长的时间.早在1990年代,随着特征脸的提出[157],FR就成为了一个比较热门的研究领域.过去基于特征进行FR的里程碑方法在图1中有所展示 如图1所示,其中介绍了4个主流技术的发展过程: holistic 方法:通过某种分布假设去直接…
https://yq.aliyun.com/ziliao/582885 最近一段时间已知忙着赶图像分析与理解的项目,在三个星期内强行接触了CNN,MRF,Caffe,openCV在内的很多东西.现在项目已经完全结束了,反而有点怀念看论文写代码的日子-希望能用这篇博文将我这段时间的工作作一个整理,也方便我之后写报告. 问题描述 深度估计是从2D图片中得到深度信息,深度估计主要分为两种形式:从单个的单目图像中获得深度信息,从一系列不同角度的单目图像中得到深度信息.在这个项目中我用到的方式主要是第一种…
Awesome Courses  Introduction There is a lot of hidden treasure lying within university pages scattered across the internet. This list is an attempt to bring to light those awesome courses which make their high-quality material i.e. assignments, lect…
IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society 2017, ISBN 978-1-5386-1032-9 Oral Session 1 Globally-Optimal Inlier Set Maximisation for Simultaneous Camera Pose and Feature Corre…
http://www.cv-foundation.org/openaccess/CVPR2016.py ORAL SESSION Image Captioning and Question Answering Monday, June 27th, 9:00AM - 10:05AM. These papers will also be presented at the following poster session 1   Deep Compositional Captioning: Descr…
cvpr所有文章 http://cs.stanford.edu/people/karpathy/cvpr2015papers/ CNN Hypercolumns for Object Segmentation and Fine-Grained LocalizationBharath Hariharan, Pablo Arbeláez, Ross Girshick, Jitendra Malik Improving Object Detection With Deep Convolutional…
这部分讨论 MAP 估计.从某个角度上来说,我们可以将这个问题转换成为前面讨论过的: 这样一来我们只需要将原先的 sum-product 换成 max-sum 即可.话虽这么说,我们还是看看 Koller 同学给大家准备了些什么东西. 首先是一些复杂性方面的结论,如给定一个 BN 和常数 ,问是否存在 .这个 decision 问题(BN-MAP-DP)是 NP-hard 的,这导致 marginal 版本也是 NP-hard 的,事实上 marginal 版本在某种意义上更难一些,即是 -co…
博一下学期: 1.week1,2018.2.26 2006-Extreme learning machine: theory and applications 期刊来源:Huang G B, Zhu Q Y, Siew C K. Extreme learning machine: theory and applications[J]. Neurocomputing, 2006, 70(1-3): 489-501. 2.week2,2018.3.5 2017-3d-prnn: Generating…
为了记住并提醒自己阅读文献,进行了记录(这些论文都是我看过理解的),论文一直在更新中. 博一上学期: 1.week 6,2017.10.16 2014-Automatic Semantic Modeling of Indoor Scenes from Low-quality RGB-D Data using Contextual Tsinghua University, Cardiff University(清华大学,英国卡迪夫大学) 期刊来源:ACM Transaction on Graphi…
A New Method for Mutual Coupling Correction of Array Output Signal 一种阵列输出信号互耦校正的新方法 Research of Robust Auto-Associative Neural Network and its application for Gas Turbine Blade Fault Diagnosis鲁棒性自适应神经网络和它在瓦斯涡轮浆片错误诊断中的应用的研究 Study of the ultrasonic thr…
Xiaoguang Tu (涂晓光): CV: Ph.D. Candidate of School of Communication and Information Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, P.R. China. Research field: Face Recognition; Medical Image Processing; Compute…
CVPR 2013 (http://www.pamitc.org/cvpr13/tutorials.php) Foundations of Spatial SpectroscopyJames Coggins (ViaSat)https://sites.google.com/site/spatialspectroscopy/pdf file not found, see talk videos here:http://techtalks.tv/events/315/599/ Large-scale…
CVPR2016 Paper list ORAL SESSIONImage Captioning and Question Answering Monday, June 27th, 9:00AM - 10:05AM. These papers will also be presented at the following poster session 1 Deep Compositional Captioning: Describing Novel Object Categories Witho…
CVPR2017 paper list Machine Learning 1 Spotlight 1-1A Exclusivity-Consistency Regularized Multi-View Subspace Clustering Xiaojie Guo, Xiaobo Wang, Zhen Lei, Changqing Zhang, Stan Z. Li Borrowing Treasures From the Wealthy: Deep Transfer Learning Thro…
1. BA在重建中的作用 借鉴于运动中重建的方法,BA引入SLAM过程,而传统的滤波方法引入BA是跟随闭环检测出现. 1.1 BA在滤波方法中的嵌入 PTAM 1.2 BA在闭环检测之后的应用 在三维重建检测到闭环之后,则可以根据匹配结果,计算出总误差,并把误差平均到闭环之内的每一选定帧. 2. BA的并行化 借鉴于运动中重建,把所有的误差平均到每一个选定的关键帧里,对于帧数较多时,可以使用数据并行化. 数据并行化是方法并行化的必要条件,多帧数据进行平差的方法天然可适合并行处理. 并行BA:Mu…
此主要讨论图像处理与分析.虽然计算机视觉部分的有些内容比如特 征提取等也可以归结到图像分析中来,但鉴于它们与计算机视觉的紧密联系,以 及它们的出处,没有把它们纳入到图像处理与分析中来.同样,这里面也有一些 也可以划归到计算机视觉中去.这都不重要,只要知道有这么个方法,能为自己 所用,或者从中得到灵感,这就够了. 8. Edge Detection 边缘检测也是图像处理中的一个基本任务.传统的边缘检测方法有基于梯度 算子,尤其是 Sobel 算子,以及经典的 Canny 边缘检测.到现在,Cann…