【转载】K-NN算法 学习总结】的更多相关文章

声明:作者:会心一击 出处:http://www.cnblogs.com/lijingchn/ 本文版权归作者和博客园共有,欢迎转载,但未经作者同意必须保留此段声明,且在文章页面明显位置给出原文连接,否则保留追究法律责任的权利. 1. K-NN算法简介 K-NN算法 ( K Nearest Neighbor, K近邻算法 ), 是机器学习中的一个经典算法, 比较简单且容易理解. K-NN算法通过计算新数据与训练数据特征值之间的距离, 然后选取 K (K>=1) 个距离最近的邻居进行分类或者回归.…
转载地址:http://www.cnblogs.com/scau20110726/archive/2012/11/18/2776124.html 粗略讲讲SPFA算法的原理,SPFA算法是1994年西安交通大学段凡丁提出 是一种求单源最短路的算法 算法中需要用到的主要变量 int n;  //表示n个点,从1到n标号 int s,t;  //s为源点,t为终点 int d[N];  //d[i]表示源点s到点i的最短路 int p[N];  //记录路径(或者说记录前驱) queue <int>…
Python3.6.3下修改代码中def classify0(inX,dataSet,labels,k)函数的classCount.iteritems()为classCount.items(),另外print在Python新版本下是函数,print后面需加上一对括号,否则执行会报错. classify0详解 import numpy as np #用于分类的输入向量是inX,输入的训练样本集为dataSet, #标签向量为 labels ,最后的参数 k 表示用于选择最近邻居的数目,其中标签向量…
[转载] 我的算法学习之路 关于 严格来说,本文题目应该是我的数据结构和算法学习之路,但这个写法实在太绕口——况且CS中的算法往往暗指数据结构和算法(例如算法导论指的实际上是数据结构和算法导论),所以我认为本文题目是合理的. 如果你使用的是手机或平板设备,那么请点击下面的链接以获得更好的阅读效果: http://zh.lucida.me/blog/on-learning-algorithms/ 原文作者:Lucida 这篇文章讲了什么? 我这些年学习数据结构和算法的总结. 一些不错的算法书籍和教…
目录 k近邻算法 一.k近邻算法学习目标 二.k近邻算法引入 三.k近邻算法详解 3.1 k近邻算法三要素 3.1.1 k值的选择 3.1.2 最近邻算法 3.1.3 距离度量的方式 3.1.4 分类决策规则 3.2 维数诅咒 四.k近邻算法的拓展 4.1 限定半径k近邻算法 4.2 最近质心算法 五.k近邻算法流程 5.1 输入 5.2 输出 5.3 流程 六.k近邻算法优缺点 6.1 优点 6.2 缺点 七.小结 更新.更全的<机器学习>的更新网站,更有python.go.数据结构与算法.…
 一. K邻近算法思想:存在一个样本数据集合,称为训练样本集,并且每个数据都存在标签,即我们知道样本集中每一数据(这里的数据是一组数据,可以是n维向量)与所属分类的对应关系.输入没有标签的新数据后,将新数据的每个特征(向量的每个元素)与样本集中数据对应的特征进行比较,然后算法提取样本集中特征最相似的的分类标签.由于样本集可以很大,我们选取前k个最相似数据,然后统计k个数据中出现频率最高的标签为新数据的标签. K邻近算法的一般流程: (1)收集数据:可以是本地数据,也可以从网页抓取. (2)准备数…
一. 使用k近邻算法改进约会网站的配对效果 k-近邻算法的一般流程: 收集数据:可以使用爬虫进行数据的收集,也可以使用第三方提供的免费或收费的数据.一般来讲,数据放在txt文本文件中,按照一定的格式进行存储,便于解析及处理. 准备数据:使用Python解析.预处理数据. 分析数据:可以使用很多方法对数据进行分析,例如使用Matplotlib将数据可视化. 测试算法:计算错误率. 使用算法:错误率在可接受范围内,就可以运行k-近邻算法进行分类. 实战内容: 海伦女士一直使用在线约会网站寻找适合自己…
K近邻算法(KNN)是指一个样本如果在特征空间中的K个最相邻的样本中的大多数属于某一个类别,则该样本也属于这个类别,并具有这个类别上样本的特性.即每个样本都可以用它最接近的k个邻居来代表.KNN算法适合分类,也适合回归.KNN算法广泛应用在推荐系统.语义搜索.异常检测. KNN算法分类原理图: 图中绿色的圆点是归属在红色三角还是蓝色方块一类?如果K=5(离绿色圆点最近的5个邻居,虚线圈内),则有3个蓝色方块是绿色圆点的“最近邻居”,比例为3/5,因此绿色圆点应当划归到蓝色方块一类:如果K=3(离…
KNN算法的定义: KNN通过测量不同样本的特征值之间的距离进行分类.它的思路是:如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别.K通常是不大于20的整数.KNN算法中,所选择的邻居都是已经正确分类的对象.该方法在定类决策上只依据最邻近的一个或者几个样本的类别来决定待分样本所属的类别. 下面通过一个简单的例子说明一下:如下图,绿色圆要被决定赋予哪个类,是红色三角形还是蓝色四方形?如果K=3,由于红色三角形所占比例为2/3,绿色圆将…
转载自:http://blog.csdn.net/v_july_v/article/details/8203674/ 从K近邻算法.距离度量谈到KD树.SIFT+BBF算法 前言 前两日,在微博上说:“到今天为止,我至少亏欠了3篇文章待写:1.KD树:2.神经网络:3.编程艺术第28章.你看到,blog内的文章与你于别处所见的任何都不同.于是,等啊等,等一台电脑,只好等待..”.得益于田,借了我一台电脑(借他电脑的时候,我连表示感谢,他说“能找到工作全靠你的博客,这点儿小忙还说,不地道”,有的时…