循环神经网络(RNN)】的更多相关文章

循环神经网络(RNN, Recurrent Neural Networks)介绍    这篇文章很多内容是参考:http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/,在这篇文章中,加入了一些新的内容与一些自己的理解.   循环神经网络(Recurrent Neural Networks,RNNs)已经在众多自然语言处理(Natural Language Proce…
博文的翻译和实践: Understanding Stateful LSTM Recurrent Neural Networks in Python with Keras 正文 一个强大而流行的循环神经网络(RNN)的变种是长短期模型网络(LSTM). 它使用广泛,因为它的架构克服了困扰着所有周期性的神经网络梯度消失和梯度爆炸的问题,允许创建非常大的.非常深的网络. 与其他周期性的神经网络一样,LSTM网络保持状态,在keras框架中实现这一点的细节可能会令人困惑. 在这篇文章中,您将会确切地了解…
一.循环神经网络RNN RNN综述 https://juejin.im/entry/5b97e36cf265da0aa81be239 RNN中为什么要采用tanh而不是ReLu作为激活函数?  https://blog.csdn.net/behboyhiex/article/details/80819530 LSTM该不该使用RELU? https://blog.csdn.net/xygl2009/article/details/78855795 从RNN的结构特征可以容易看出它最擅长解决与时间…
深度学习之循环神经网络RNN概述,双向LSTM实现字符识别 2. RNN概述 Recurrent Neural Network - 循环神经网络,最早出现在20世纪80年代,主要是用于时序数据的预测和分类.它的基本思想是:前向将上一个时刻的输出和本时刻的输入同时作为网络输入,得到本时刻的输出,然后不断地重复这个过程.后向通过BPTT(Back Propagation Through Time)算法来训练得到网络的权重.RNN比CNN更加彻底的是,CNN通过卷积运算共享权重从而减少计算量,而RNN…
传统DNN或者CNN无法对时间序列上的变化进行建模,即当前的预测只跟当前的输入样本相关,无法建立在时间或者先后顺序上出现在当前样本之前或者之后的样本之间的联系.实际的很多场景中,样本出现的时间顺序非常重要,例如自然语言处理.语音识别.手写体识别等应用. 循环神经网络RNN包含循环的网络,可以记录信息的持久化信息,特别适合应用在跟时间序列相关的场合. RNN之父Jürgen Schmidhuber Jürgen Schmidhuber 是瑞士人工智能实验室 IDSIA 的科学事务主管,同时任教于卢…
一.前言 1.1 诞生原因 在普通的前馈神经网络(如多层感知机MLP,卷积神经网络CNN)中,每次的输入都是独立的,即网络的输出依赖且仅依赖于当前输入,与过去一段时间内网络的输出无关.但是在现实生活中,许多系统的输出不仅依赖于当前输入,还与过去一段时间内系统的输出有关,即需要网络保留一定的记忆功能,这就给前馈神经网络提出了巨大的挑战.除此之外,前馈神经网络难以处理时序数据,比如视频.语音等,因为时序数据的序列长度一般是不固定的,而前馈神经网络要求输入.输出的维度都是固定的,不能任意改变.出于这两…
原文地址: http://blog.csdn.net/heyongluoyao8/article/details/48636251# 循环神经网络(RNN, Recurrent Neural Networks)介绍    这篇文章很多内容是参考:http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/,在这篇文章中,加入了一些新的内容与一些自己的理解.   循环神经网…
Google TensorFlow程序员点赞的文章!   前言 目录: - 向量表示以及它的维度 - rnn cell - rnn 向前传播 重点关注: - 如何把数据向量化的,它们的维度是怎么来的 - 一共其实就是两步: 单个单元的rnn计算,拉通来的rnn计算 ​ 在看本文前,可以先看看这篇文章回忆一下: 吴恩达deepLearning.ai循环神经网络RNN学习笔记(理论篇) 我们将实现以下结构的RNN,在这个例子中 Tx = Ty. 向量表示以及它的维度 Input with  nx …
在前面我们讲到了DNN,以及DNN的特例CNN的模型和前向反向传播算法,这些算法都是前向反馈的,模型的输出和模型本身没有关联关系.今天我们就讨论另一类输出和模型间有反馈的神经网络:循环神经网络(Recurrent Neural Networks ,以下简称RNN),它广泛的用于自然语言处理中的语音识别,手写书别以及机器翻译等领域. 1. RNN概述 在前面讲到的DNN和CNN中,训练样本的输入和输出是比较的确定的.但是有一类问题DNN和CNN不好解决,就是训练样本输入是连续的序列,且序列的长短不…
0语言模型-N-Gram 语言模型就是给定句子前面部分,预测后面缺失部分 eg.我昨天上学迟到了,老师批评了____. N-Gram模型: ,对一句话切词 我 昨天 上学 迟到 了 ,老师 批评 了 ____. 2-N-Gram 会在语料库中找 了 后面最可能的词: 3-N-Gram 会在预料库中找 批评了 后面最可能的词: 4-N-Gram 的内存耗费就非常巨大了(语料库中保存所有的四个词的预料组合).     1.1单向循环神经网络 一个单隐层结构示意图:…
转自 http://blog.csdn.net/xingzhedai/article/details/53144126 更多参考:http://blog.csdn.net/mafeiyu80/article/details/51446558 http://blog.csdn.net/caimouse/article/details/70225998 http://kubicode.me/2017/05/15/Deep%20Learning/Understanding-about-RNN/ RNN…
rnn.utils.py import numpy as np def softmax(x): e_x = np.exp(x - np.max(x)) return e_x / e_x.sum(axis=0) def sigmoid(x): return 1 / (1 + np.exp(-x)) 引入所需的包 import numpy as np from rnn_utils import * 1 - 基础循环神经网络的前向传播 下面是如何实现一个RNN: Steps: 实现单步RNN所需的计算…
这部分许多内容要类比CNN来进行理解和解释,所以需要对CNN比较熟悉. RNN的特点 1. 权值共享 CNN权值共享,RNN也有权值共享,在入门篇可以看到RNN结构图中,权重使用的是同样的字母 为什么要权值共享 a. 减少weight,减少计算量,这点其实比较好理解. 试想10X10的输入,全连接隐藏层如果是1000个神经元,那就有100000个weight要计算: 如果是卷积神经网络,5X5的感受视野,只要25个weight.即使100个卷积核,才2500,不严谨,反正很少就对了. b. 参考…
循环神经网络 循环神经网络介绍摘抄自莫凡博士的教程 序列数据 我们想象现在有一组序列数据 data 0,1,2,3. 在当预测 result0 的时候,我们基于的是 data0, 同样在预测其他数据的时候, 我们也都只单单基于单个的数据. 每次使用的神经网络都是同一个 NN. 不过这些数据是有关联 顺序的 , 就像在厨房做菜, 酱料 A要比酱料 B 早放, 不然就串味了. 所以普通的神经网络结构并不能让 NN 了解这些数据之间的关联. 处理序列数据的神经网络 那我们如何让数据间的关联也被 NN…
随着科学技术的发展以及硬件计算能力的大幅提升,人工智能已经从几十年的幕后工作一下子跃入人们眼帘.人工智能的背后源自于大数据.高性能的硬件与优秀的算法的支持.2016年,深度学习已成为Google搜索的热词,随着最近一两年的围棋人机大战中,阿法狗完胜世界冠军后,人们感觉到再也无法抵挡住AI的车轮的快速驶来.在2017年这一年中,AI已经突破天际,相关产品也出现在人们的生活中,比如智能机器人.无人驾驶以及语音搜索等.最近,世界智能大会在天津举办成功,大会上许多业内行家及企业家发表自己对未来的看法,可…
一.循环神经网络简介 循环神经网络,英文全称:Recurrent Neural Network,或简单记为RNN.需要注意的是,递归神经网络(Recursive Neural Network)的简写也是RNN,但通常RNN指循环神经网络.循环神经网络是一类用于处理序列数据的神经网络.它与其他神经网络的不同是,RNN可以更好的去处理序列的信息,即认准了前后的输入之间存在关系.在NLP中,去理解一整句话,孤立的理解组成这句话的词显然是不够的,我们需要整体的处理由这些词连接起来的整个序列. 如:(1)…
RNN适用场景 循环神经网络(Recurrent Neural Network)适合处理和预测时序数据 RNN的特点 RNN的隐藏层之间的节点是有连接的,他的输入是输入层的输出向量.extend(上一时刻隐藏层的状态向量). demo:单层全连接网络作为循环体的RNN 输入层维度:x 隐藏层维度:h 每个循环体的输入大小为:x+h 每个循环体的输出大小为:h 循环体的输出有两个用途: 下一时刻循环体的输入的一部分 经过另一个全连接神经网络,得到当前时刻的输出 序列长度 理论上RNN支持任意序列长…
1. 什么是RNN 循环神经网络(Recurrent Neural Network, RNN)是一类以序列(sequence)数据为输入,在序列的演进方向进行递归(recursion)且所有节点(循环单元)按链式连接的递归神经网络(recursive neural network) 1.1 RNN的应用 文本生成(生成序列) 机器翻译 看图说话 文本(情感)分析 智能客服 聊天机器人 语音识别 搜索引擎 个性化推荐 1.2 为什么有了CNN,还要RNN? 传统神经网络(包括CNN),输入和输出都…
 一:vanilla RNN 使用机器学习技术处理输入为基于时间的序列或者可以转化为基于时间的序列的问题时,我们可以对每个时间步采用递归公式,如下,We can process a sequence of vector x by applying a recurrence formula at every time step: ht = fW( ht-1,xt ) 其中xt 是在第t个时间步的输入(input vector at time step t):ht 是新状态量(new state),…
转自 http://blog.csdn.net/xingzhedai/article/details/53144126 更多参考:http://blog.csdn.net/mafeiyu80/article/details/51446558 http://blog.csdn.net/caimouse/article/details/70225998 http://kubicode.me/2017/05/15/Deep%20Learning/Understanding-about-RNN/ RNN…
前言 目录: RNN提出的背景 - 一个问题 - 为什么不用标准神经网络 - RNN模型怎么解决这个问题 - RNN模型适用的数据特征 - RNN几种类型 RNN模型结构 - RNN block - 简化符号表示 - stacked RNN - 双向RNN - 梯度消失爆炸问题 GRU模型结构 LSTM模型结构 - LSTM背后的关键思想 - Step by Step理解LSTM 本文可以解答: RNN用来解决什么问题,什么样的数据特征适合用它来解决 ​RNN的缺陷是什么,LSTM,GRU是如何…
本篇文章被Google中国社区组织人转发,评价: 条理清晰,写的很详细! 被阿里算法工程师点在看! 所以很值得一看! 前言 目录: RNN提出的背景 - 一个问题 - 为什么不用标准神经网络 - RNN模型怎么解决这个问题 - RNN模型适用的数据特征 - RNN几种类型 RNN模型结构 - RNN block - 简化符号表示 - stacked RNN - 双向RNN - 梯度消失爆炸问题 GRU模型结构 LSTM模型结构 - LSTM背后的关键思想 - Step by Step理解LSTM…
1. 从一个栗子开始 - Slot Filling 比如在一个订票系统上,我们的输入 "Arrive Taipei on November 2nd" 这样一个序列,我们设置几个槽位(Slot),希望算法能够将关键词'Taipei'放入目的地(Destination)槽位, 将November和2nd放入到达时间(Time of Arrival)槽位,将Arrive和on放入其他(Other)槽位,实现对输入序列的一个归类,以便后续提取相应信息. 用前馈神经网络(Feedforward…
一.基本概念 RNN针对的数据是时序数据.RNN它解决了前馈神经网络,无法体现数据时序关系的缺点.在RNN网络中,不仅同一个隐含层的节点可以相互连接,同时隐含层的输入不仅来源于输入层的输入还包括了上一个隐含层的输出. RNN中主要有以下几个参数: (1)Xt表示第t隐含层的输入层的输入, St表示第t隐含层的隐含状态,Yt表示第t隐含层的输出 (2)U表示Xt的参数,W表示St-1的参数,V表示St的参数 (3)St = f(UXt+WSt-1) Yt = VSt RNN实现了参数共享,也就是不…
本博客适合那些BP网络很熟悉的读者 一 基本结构和前向传播 符号解释: 1. $c_{t}^{l}$:t时刻第l层的神经元的集合,因为$c_{t}^{l}$表示的是一层隐藏层,所以图中一个圆圈表示多个神经元. 2. $h_{t}^{l}$:第l层在t时刻的输出.因为$h_{t}^{l}$是一层隐藏层的输出,所以表示的是一个向量. 3. $L_{j}$:表示的是在j时刻,网络的输出的值和目标输出值的平方差,L表示的是所有时刻的平方差的和. 4. $W_{v}$:是一个矩阵,表示的是输入x到c的权值…
首先学习RNN需要一定的基础,即熟悉普通的前馈神经网络,特别是BP神经网络,最好能够手推. 所谓前馈,并不是说信号不能反向传递,而是网络在拓扑结构上不存在回路和环路. 而RNN最大的不同就是存在环路. 为什么需要RNN 1. 特征之间序列性 普通的神经网络的输入,具备样本独立同分布(iid), 特征也是独立的,多数也是同分布的,特征之间谁先谁后无所谓, 而现实中描述一件事情,往往是逻辑性的,有先后顺序的, 比如理解一个句子,只看句子中的词是无法理解整个句子的,再如猜猜下一个字,看到 “天空很”,…
摘自:http://blog.csdn.net/heyongluoyao8/article/details/48636251 不同于传统的FNNs(Feed-forward Neural Networks,前向反馈神经网络),RNNs引入了定向循环,能够处理那些输入之间前后关联的问题.定向循环结构如下图所示:    该tutorial默认读者已经熟悉了基本的神经网络模型.如果不熟悉,可以点击:Implementing A Neural Network From Scratch进行学习. 什么是R…
一.RNN的作用和粗略介绍: RNN可解决的问题: 训练样本输入是连续的序列,且序列的长短不一,比如基于时间的序列:一段段连续的语音,一段段连续的手写文字.这些序列比较长,且长度不一,比较难直接的拆分成一个个独立的样本来通过DNN/CNN进行训练. T个时间步: 我们先来看单个RNN cell: 简单的RNN前向传播实现过程: 以上代码实现: import numpy as np # 定义RNN的参数. X = [1,2] state = [0.0, 0.0] w_cell_state = np…
运行代码: import tensorflow as tf import numpy as np import matplotlib.pyplot as plt BATCH_START = 0 TIME_STEPS = 20 BATCH_SIZE = 50 INPUT_SIZE = 1 OUTPUT_SIZE = 1 CELL_SIZE = 10 LR = 0.006 def get_batch(): global BATCH_START, TIME_STEPS # xs shape (50ba…
运行代码: import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data # set random seed for comparing the two result calculations tf.set_random_seed(1) # this is data mnist = input_data.read_data_sets('MNIST_data', one_hot=True) #…