MT【226】费马点两题】的更多相关文章

已知$z_1=2\sqrt{3}i,z_2=3,z_3=-3,|z_3-z_4|=2\sqrt{3},$则$|z_1-z_4|+|z_2-z_4|$的最小值为_____ 提示:费马点最小,取$Z_4(0,\sqrt{3})$为$\Delta Z_1Z_2Z_3$的费马点. 此时$|z_3-z_4|=2\sqrt{3}$故$|z_1-z_4|+|z_2-z_4|\ge3\sqrt{3}$注:只有这些很对称特殊的点的费马点可以坐标写出,一般的已知三个点的坐标求费马点的坐标的公式没有. 练习:设$z$…
椭圆$\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}=1,(a>b>0)$的一个焦点为$F$,过$F$的直线交椭圆于$A,B$两点,$M$是点$A$关于原点的对称点.若$|AB|\perp |FM|,|AB|=|FM|$则椭圆的离心率为___ 已知双曲线$\dfrac{x^2}{a^2}-\dfrac{y^2}{b^2}=1,(a>b>0)$的右焦点$F_2$,过$F_2$的直线交双曲线于$A,B$两点,$C$是点$A$关于原点$O$的对称点,若$CF\perp…
题目链接 题意 : m张牌,可以翻n次,每次翻xi张牌,问最后能得到多少种形态. 思路 :0定义为反面,1定义为正面,(一开始都是反), 对于每次翻牌操作,我们定义两个边界lb,rb,代表每次中1最少时最少的个数,rb代表1最多时的个数.一张牌翻两次和两张牌翻一次 得到的奇偶性相同,所以结果中lb和最多的rb的奇偶性相同.如果找到了lb和rb,那么,介于这两个数之间且与这两个数奇偶性相同的数均可取到,然后在这个区间内求组合数相加(若lb=3,rb=7,则3,5,7这些情况都能取到,也就是说最后的…
题意: 给n(1<n<),求(s1+s2+s3+...+sn)mod(1e9+7).其中si表示n由i个数相加而成的种数,如n=4,则s1=1,s2=3.                         (全题文末) 知识点: 整数n有种和分解方法. 费马小定理:p是质数,若p不能整除a,则 a^(p-1) ≡1(mod p).可利用费马小定理降素数幂. 当m为素数,(m必须是素数才能用费马小定理) a=2时.(a=2只是题中条件,a可以为其他值) mod m =  *      //  k=…
题目链接 题意:有一排砖,可以染红蓝绿黄四种不同的颜色,要求红和绿两种颜色砖的个数都是偶数,问一共有多少种方案,结果对10007取余. 题解:刚看这道题第一感觉是组合数学,正向推了一会还没等推出来队友就打表找到公式了,然后我就写了一个快速幂加个费马小定理就过了去看别的题了,赛后找到了一个很不错的博客:传送门,原来这道题也可以用DP+矩阵快速幂AC.下面说下组合数学的做法: 首先一共有4^n种情况,我们减去不符合条件的情况就行了,从中取k个进行染红绿色一共C(n,k)种情况,剩下的蓝黄色一共有2^…
Description Consider a positive integer X,and let S be the sum of all positive integer divisors of 2004^X. Your job is to determine S modulo 29 (the rest of the division of S by 29). Take X = 1 for an example. The positive integer divisors of 2004^1…
Description “在那山的那边海的那边有一群小肥猪.他们活泼又聪明,他们调皮又灵敏.他们自由自在生活在那绿色的大草坪,他们善良勇敢相互都关心……” ——选自猪王国民歌 很久很久以前,在山的那边海的那边的某片风水宝地曾经存在过一个猪王国.猪王国地理位置偏僻,实施的是适应当时社会的自给自足的庄园经济,很少与外界联系,商贸活动就更少了.因此也很少有其他动物知道这样一个王国. 猪王国虽然不大,但是土地肥沃,屋舍俨然.如果一定要拿什么与之相比的话,那就只能是东晋陶渊明笔下的大家想象中的桃花源了.猪…
在p是素数的情况下,对任意整数x都有xp≡x(mod p).这个定理被称作费马小定理其中如果x无法被p整除,我们有xp-1≡1(mod p).利用这条性质,在p是素数的情况下,就很容易求出一个数的逆元.那上面的式子变形之后得到a-1≡ap-2(mod p),因此可以通过快速幂求出逆元. 我们先来证明一下费马小定理: 费马小定理证明: 一.准备知识 引理1:剩余系定理2 若a,b,c为任意3个整数,m为正整数,且(m,c)=1,则当ac≡bc(mod m)时,有a≡b(mod m) 证明:ac≡b…
A Star not a Tree? Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 3435   Accepted: 1724 Description Luke wants to upgrade his home computer network from 10mbs to 100mbs. His existing network uses 10base2 (coaxial) cables that allow you…
1243: CKJ老师爱数学 时间限制: 1 Sec  内存限制: 128 MB提交: 56  解决: 13[提交][状态][讨论版] 题目描述 众所周知,CKJ老师非常热爱数学,他对于方程组的有自己的独到的研究,today,他抛给了你一个too simple的方程组x^2+y^2=z^2,z是一个已给的正整数,然后他毫不客气地问你,这个方程组的整数解有几个? 输入 包含一个整数T表示输入数据组数, 接下来T行每行一个整数z(z<=2000 000 000) 输出 每行一个整数表示方程组的解的个…