LightGBM的并行优化 上一篇文章介绍了LightGBM算法的特点,总结起来LightGBM采用Histogram算法进行特征选择以及采用Leaf-wise的决策树生长策略,使其在一批以树模型为基模型的boosting算法中脱颖而出.在时间和空间上都更胜一筹,准确率也比其他模型表现得更好.这些模型在处理一般规模的数据时,单机即可以解决,然而当数据规模更大时,即需要进行分布式计算,分担每台机器(worker)的压力.这篇文章介绍LightGBM的两种并行学习算法(Feature Paralle…
XGBoost——机器学习(理论+图解+安装方法+python代码) 目录 一.集成算法思想 二.XGBoost基本思想 三.MacOS安装XGBoost 四.用python实现XGBoost算法 在竞赛题中经常会用到XGBoost算法,用这个算法通常会使我们模型的准确率有一个较大的提升.既然它效果这么好,那么它从头到尾做了一件什么事呢?以及它是怎么样去做的呢? 我们先来直观的理解一下什么是XGBoost.XGBoost算法是和决策树算法联系到一起的.决策树算法在我的另一篇博客中讲过了. 一.集…
LightGBM算法总结 2018年08月21日 18:39:47 Ghost_Hzp 阅读数:2360 版权声明:本文为博主原创文章,未经博主允许不得转载. https://blog.csdn.net/weixin_39807102/article/details/81912566 1 LightGBM原理 1.1 GBDT和 LightGBM对比 1.2 LightGBM 的动机 1.3 Xgboost 原理 1.4 LightGBM 优化 1.4.1 Histogram 算法 1.4.2…
ML神器:sklearn的快速使用 传统的机器学习任务从开始到建模的一般流程是:获取数据 -> 数据预处理 -> 训练建模 -> 模型评估 -> 预测,分类.本文我们将依据传统机器学习的流程,看看在每一步流程中都有哪些常用的函数以及它们的用法是怎么样的.希望你看完这篇文章可以最为快速的开始你的学习任务. 1. 获取数据 1.1 导入sklearn数据集 sklearn中包含了大量的优质的数据集,在你学习机器学习的过程中,你可以通过使用这些数据集实现出不同的模型,从而提高你的动手实践…
本博客默认读者对神经网络与Tensorflow有一定了解,对其中的一些术语不再做具体解释.并且本博客主要以图片数据为例进行介绍,如有错误,敬请斧正. 使用Tensorflow训练神经网络时,我们可以用多种方式来读取自己的数据.如果数据集比较小,而且内存足够大,可以选择直接将所有数据读进内存,然后每次取一个batch的数据出来.如果数据较多,可以每次直接从硬盘中进行读取,不过这种方式的读取效率就比较低了.此篇博客就主要讲一下Tensorflow官方推荐的一种较为高效的数据读取方式——tfrecor…
1.声音音频基础知识 (1)声音是由震动产生,表现为波的形式.波有频率,振幅等参数.对于声波而言:频率越大,音调越高,反之越低.振幅越大,声音越大,反之越小. (2)采样率,帧率:波是连续(无穷)的,计算机存储是离散(有限)的.要想用有限存储无限,几乎不可能.因此,要每隔一段时间对波进行一次采样.每秒采样次数采样率.长用采样率是44.1kHz(这里的1k不是1024,是1000!!!切记.). (3)采样大小,采样宽度:波每一个时刻都有一个对应的能量值,在计算机中用整数存储.通常使用16bit有…
这是个人在竞赛中对LGB模型进行调参的详细过程记录,主要包含下面六个步骤: 大学习率,确定估计器参数n_estimators/num_iterations/num_round/num_boost_round: 确定num_leaves和max_depth 确定min_data_in_leaf 确定bagging_fraction+bagging_freq和feature_fraction 确定L1L2正则reg_alpha和reg_lambda: 降低学习率 [这里必须说一下,lightbg的参…
前言 如何对现有的程序进行并行优化,是 GPU 并行编程技术最为关注的实际问题.本文将提供几种优化的思路,为程序并行优化指明道路方向. 优化前准备 首先,要明确优化的目标 - 是要将程序提速 2 倍?还是 10 倍?100倍?也许你会不假思索的说当然是提升越高越好. 但这里存在一个优化成本的问题.在同样的技术水平硬件水平下,提升 2 倍也许只要一个下午的工作量,但提高 10 倍可能要考虑到更多的东西,也许是一周的工作量.提高 100 倍, 1000 倍需要的成本,时间就更多了. 然后,需要将这个…
前言 如何对现有的程序进行并行优化,是 GPU 并行编程技术最为关注的实际问题.本文将提供几种优化的思路,为程序并行优化指明道路方向. 优化前准备 首先,要明确优化的目标 - 是要将程序提速 2 倍?还是 10 倍?100倍?也许你会不假思索的说当然是提升越高越好. 但这里存在一个优化成本的问题.在同样的技术水平硬件水平下,提升 2 倍也许只要一个下午的工作量,但提高 10 倍可能要考虑到更多的东西,也许是一周的工作量.提高 100 倍, 1000 倍需要的成本,时间就更多了. 然后,需要将这个…
Java 进阶7 并行优化 JDK多任务执行框架技术 20131114          Java 语言本身就是支持多线程机制的,他提供了 Thread 类 Runnable 接口等简单的多线程支持工具,同时为了进一步改善并发程序的性能,在 JDK中还提供了用于多线程管理的线程池概念.并行优化中,一个重要的知识点就是 线程池技术. ExecutorService exe = Executors.newCachedThreadPool(); 1. 无限制线程的缺陷           多线程设计的…