首先,从$(0,0)$走到$(n,m)$的方案数是$ C_{n+m}^n$,可以把走的方向看作一种序列,这个序列长$ n+m$ ,你需要从中任取$n$个位置,让他向右走: 然后就是如何处理不能走的点:把点sort一遍,按横纵坐标降序排列,这样前面的点可能会包含后面的点,所以算方案数时时要考虑 算出来从$(0,0)$到$橙色的点(x,y)$的方案数为$C_{x+y}^x$,再减去蓝色点*蓝色点到橙色点方案数,才是到橙色点的方案数: 在最后把每个店的方案数再乘上到终点的代价,就是在模其中一个数意义下…
洛谷 P4478 [BJWC2018]上学路线 原题 神仙题orz,竟然没有1A....容斥+卢卡斯+crt?? 首先用容斥做,记\(f[i][0/1]\)表示到i号点经过了奇数/偶数个点的方案数,因为\(f[i][0]+f[i][1]=1\)所以只要记一个\(f[i]\)是经过奇数个点的方案数就行 枚举一个左下的点走到这个点,或者直接从1走到这个点, \(f[i]=\sum_{\text{j in lower left side}}((1-f[j])\times C_{x_i+y_i-x_j-…
Description 小B 所在的城市的道路构成了一个方形网格,它的西南角为(0,0),东北角为(N,M). 小B 家住在西南角,学校在东北角.现在有T 个路口进行施工,小B 不能通过这些路口.小B 喜欢走最短的路径到达目的地,因此他每天上学时都只会向东或北行走:而小B又喜欢走不同的路径,因此他问你按照他走最短路径的规则,他可以选择的不同的上学路线有多少条.由于答案可能很大,所以小B 只需要让你求出路径数mod P 的值. \((0,0)\to (N,M)\)的路径数是\(C_{n+m}^n\…
题目描述 小B 所在的城市的道路构成了一个方形网格,它的西南角为(0,0),东北角为(N,M). 小B 家住在西南角,学校在东北角.现在有T 个路口进行施工,小B 不能通过这些路口.小B 喜欢走最短的路径到达目的地,因此他每天上学时都只会向东或北行走:而小B又喜欢走不同的路径,因此他问你按照他走最短路径的规则,他可以选择的不同的上学路线有多少条.由于答案可能很大,所以小B 只需要让你求出路径数mod P 的值. 输入输出格式 输入格式:第一行为四个整数N.M.T.P. 接下来的T 行,每行两个整…
LINK:上学路线 从(0,0)走到(n,m)每次只能向上或者向右走 有K个点不能走求方案数,对P取模. \(1\leq N,M\leq 10^10 0\leq T\leq 200\) p=1000003或p=1019663265 考虑dp......(没啥意义. 要求出 从(0,0)到(n,m)不经过一个障碍点的方案数 显然需要容斥. 所有方案C(n+m,n). 还是考虑dp 将T个障碍点排序之后可以发现 后面的点一定不会经过前面的点. 设f[i]表示到达第i个点且不经过前面i-1个点的方案数…
传送门 Description 小B 所在的城市的道路构成了一个方形网格,它的西南角为(0,0),东北角为(N,M). 小B 家住在西南角,学校在东北角.现在有T 个路口进行施工,小B 不能通过这些路口.小B 喜欢走最短的路径到达目的地,因此他每天上学时都只会向东或北行走:而小B又喜欢走不同的路径,因此他问你按照他走最短路径的规则,他可以选择的不同的上学路线有多少条.由于答案可能很大,所以小B 只需要让你求出路径数mod P 的值. Input 第一行为四个整数N.M.T.P. 接下来的T 行,…
Description 小B 所在的城市的道路构成了一个方形网格,它的西南角为(0,0),东北角为(N,M). 小B 家住在西南角,学校在东北角.现在有T 个路口进行施工,小B 不能通过这些路口.小B 喜欢走最短的路径到达目的地,因此他每天上学时都只会向东或北行走:而小B又喜欢走不同的路径,因此他问你按照他走最短路径的规则,他可以选择的不同的上学路线有多少条.由于答案可能很大,所以小B 只需要让你求出路径数mod P 的值. \((0,0)\to (N,M)\)的路径数是\(C_{n+m}^n\…
传送门:https://www.lydsy.com/JudgeOnline/problem.php?id=3782 有部分分的传送门:https://www.luogu.org/problemnew/show/P4478 看到标题开始还以为是AHOI的小雪和小可可…… 题解:乍一看会40pts:测试点1.2:n,m<=1000的直接O(nm)DP:测试点3.4:没有障碍物直接C(n+m,n),然后p=1e6+3是质数可以直接取模. 想了几分钟会60pts:测试点5.6:模数可以拆成几个不超过1e…
好吧刚开始以为扩展卢卡斯然后就往上套..结果奇奇怪怪又WA又T...后来才意识到它的因子都是质数...qwq怕不是这就是学知识学傻了.. 题意:$ G^{\Sigma_{d|n} \space C_n^d}\space mod \space 999911659$ 首先发现999911659是个质数,所以根据欧拉定理的推论有 $ G^{\Sigma_{d|n}\space C_n^d} \equiv G^{\Sigma_{d|n}\space C_n^d\space mod \space\phi(…
上学路线_NOI导刊2009普及(6) 题目详见:上学路线_NOI导刊2009普及(6) 这是一道基础的DFS(深搜)题,堪称模板,是新手练习搜索与回溯的好题选. 大致思路:从(1,1)开始搜索,每次只能往上走或往右走一个格(遇到题目给出的障碍物则直接不走),一直到(a,b),再回来找另一条路.每到一遍(a,b)就让计数器tot+1,最后输出tot,即为最终方案总数. AC代码: #include<iostream> #include<cstdio> #include<cst…