深入理解HDFS的架构和原理】的更多相关文章

(一) HDFS主要是用于做什么的? HDFS(Hadoop Distributed File System)是Hadoop项目的核心子项目,是分布式计算中数据存储管理的基础,是基于流数据模式访问和处理超大文件的需求而开发的,可以运行于廉价的商用服务器上.它所具有的高容错.高可靠性.高可扩展性.高获得性.高吞吐率等特征为海量数据提供了不怕故障的存储,为超大数据集(Large Data Set)的应用处理带来了很多便利. (二) HDFS的优缺点比较 HDFS 的优点: 1.高容错性 1)数据自动…
目录 HDFS 是做什么的 HDFS 从何而来 为什么选择 HDFS 存储数据 HDFS 如何存储数据 HDFS 如何读取文件 HDFS 如何写入文件 HDFS 副本存放策略 Hadoop2.x新特性 1.HDFS 是做什么的 HDFS(Hadoop Distributed File System)是Hadoop项目的核心子项目,是分布式计算中数据存储管理的基础,是基于流数据模式访问和处理超大文件的需求而开发的,可以运行于廉价的商用服务器上.它所具有的高容错.高可靠性.高可扩展性.高获得性.高吞…
在Hadoop1.x版本的时候,Namenode存在着单点失效的问题.如果namenode失效了,那么所有的基于HDFS的客户端——包括MapReduce作业均无法读,写或列文件,因为namenode是唯一存储元数据与文件到数据块映射的地方.而从一个失效的namenode中恢复的步骤繁多,系统恢复时间太长,也会影响到日常的维护. Hadoop的2.x版本在HDFS中增加了对高可用性的支持来解决单点失效的问题. 这一实现中简单说就是配置了一对活动-备用namenode.当活动namenode失效的…
1. MapReduce 定义 Hadoop 中的 MapReduce是一个使用简单的软件框架.基于它写出来的应用程序能够执行在由上千个商用机器组成的大型集群上,并以一种可靠容错式并行处理TB级别的数据集 2. MapReduce 特点 MapReduce 为什么如此受欢迎?尤其如今互联网+时代,互联网+公司都在使用 MapReduce.MapReduce 之所以如此受欢迎.它主要有下面几个特点. - MapReduce 易于编程.它简单的实现一些接口,就能够完毕一个分布式程序.这个分布式程序能…
原文链接:HDFS架构及原理 引言 进入大数据时代,数据集的大小已经超过一台独立物理计算机的存储能力,我们需要对数据进行分区(partition)并存储到若干台单独的计算机上,也就出现了管理网络中跨多台计算机存储的文件系统:分布式文件系统(distributed filesystem).基于hadoop分布式文件系统HDFS(Hadoop Distributed Filesystem)具备高容错.高吞吐量等特性,在大数据和AI时代得以广泛应用. HDFS设计 HDFS设计初衷: 低成本:HDFS…
1.概述:最近,有一些工程师问我有关HBase的基本架构的问题,其实这个问题仅仅说架构是非常简单,但是需要理解.在这里,我觉得可以用HDFS的架构作为借鉴.(其实像Hadoop生态系统中的大部分组建的架构原理是类似,不信你往下看) 2.介绍架构 (1)HDFS例子 在这里我以我比较熟悉的HDFS分布式文件系统作为一个例子来简单说明一下.首先我对HDFS的架构做一个简单的说明: HDFS分布式文件系统主要三个组建:NameNode和DataNode以及SecondaryNameNode.Namen…
Hbase架构与原理 HBase是一个分布式的.面向列的开源数据库,该技术来源于 Fay Chang所撰写的Google论文"Bigtable:一个结构化数据的分布式存储系统".就像Bigtable利用了Google文件系统(File System)所提供的分布式数据存储一样,HBase在Hadoop之上提供了类似于Bigtable的能力.HBase是Apache的Hadoop项目的子项目.HBase不同于一般的关系数据库,它是一个适合于非结构化数据存储的数据库.另一个不同的是HBas…
Hadoop 和 Spark 的关系 Spark 运算比 Hadoop 的 MapReduce 框架快的原因是因为 Hadoop 在一次 MapReduce 运算之后,会将数据的运算结果从内存写入到磁盘中,第二次 Mapredue 运算时在从磁盘中读取数据,所以其瓶颈在2次运算间的多余 IO 消耗. Spark 则是将数据一直缓存在内存中,直到计算得到最后的结果,再将结果写入到磁盘,所以多次运算的情况下, Spark 是比较快的. 其优化了迭代式工作负载 Hadoop的局限 Spark的改进 抽…
storm 架构与原理 1 storm简介 1.1 storm是什么 如果只用一句话来描述 storm 是什么的话:分布式 && 实时 计算系统.按照作者 Nathan Marz 的说法,storm对于实时计算的意义类似于hadoop对于批处理的意义. Hadoop(大数据分析领域无可争辩的王者)专注于批处理。这种模型对许多情形(比如为网页建立索引)已经足够,但还存在其他一些使用模型,它们需要来自高度动态的来源的实时信息。为了解决这个问题,就得借助 Nathan Marz 推出的 stor…
下面给大家介绍怎么理解impala,impala工作原理是什么. Impala是hadoop上交互式MPP SQL引擎, 也是目前性能最好的开源SQL-on-hadoop方案. 如下图所示, impala性能超过SparkSQL. Presto. Hive. impala与hadoop生态结合紧密 (1) HDFS是impala最主要的数据源. 除此之外, impala也支持HBase,甚至支持S3存储. (2) impala表定义存储在hive metastore中, 支持读取hive表定义.…