4.DataFrame(快速开始)】的更多相关文章

快速开始 基本概念 ''' 在使用 DataFrame 时,需要了解三个对象上的操作:Collection(DataFrame) ,Sequence,Scalar Collection(DataFrame)表示表结构(或者二维结构) Sequence表示列(一维结构) Scalar表示标量 要注意的是,这些对象仅在使用 Pandas 数据创建后会包含实际数据 而在 ODPS 表上创建的对象中并不包含实际的数据, 而仅仅包含对这些数据的操作,实质的存储和计算会在 ODPS 中进行. ''' # 创…
提高Python数据分析速度的八个小技巧 01 使用Pandas Profiling预览数据 这个神器我们在之前的文章中就详细讲过,使用Pandas Profiling可以在进行数据分析之前对数据进行快速预览,拿我们使用过很多次的NBA数据集来说,导入数据集之后 一行代码就生成丰富的交互式数据EDA报告 可以看到,除了之前我们需要的一些描述性统计数据,该报告还包含以下信息: 类型推断:检测数据帧中列的数据类型. 要点:类型,唯一值,缺失值 分位数统计信息,例如最小值,Q1,中位数,Q3,最大值,…
首先,python 多线程不能充分利用多核CPU的计算资源(只能共用一个CPU),所以得用多进程.笔者从3.7亿数据的索引,取200多万的数据,从取数据到构造pandas dataframe总共大概用时14秒左右.每个分片用一个进程查询数据,最后拼接出完整的结果. 由于返回的json数据量较大,每次100多万到200多万,如何快速根据json构造pandas 的dataframe是个问题 — 笔者测试过read_json().json_normalize().DataFrame(eval(pan…
作者:Syn良子 出处:http://www.cnblogs.com/cssdongl 转载请注明出处 SparkSQL这块儿从1.4开始支持了很多的窗口分析函数,像row_number这些,平时写程序加载数据后用SQLContext 能够很方便实现很多分析和查询,如下 val sqlContext = new SQLContext(sc) sqlContext.sql("select -.") 然而我看到Spark后续版本的DataFrame功能很强大,想试试使用这种方式来实现比如r…
本篇文档是介绍如何快速使用spark,首先将会介绍下spark在shell中的交互api,然后展示下如何使用java,scala,python等语言编写应用.可以查看编程指南了解更多的内容. 为了良好的阅读下面的文档,最好是结合实际的练习.首先需要下载spark,然后安装hdfs,可以下载任意版本的hdfs. Spark Shell 交互 基本操作 Spark Shell提供给用户一个简单的学习API的方式 以及 快速分析数据的工具.在shell中,既可以使用scala(运行在java虚拟机,因…
快速入门 使用 Spark Shell 进行交互式分析 基础 Dataset 上的更多操作 缓存 独立的应用 快速跳转 本教程提供了如何使用 Spark 的快速入门介绍.首先通过运行 Spark 交互式的 shell(在 Python 或 Scala 中)来介绍 API, 然后展示如何使用 Java , Scala 和 Python 来编写应用程序. 为了继续阅读本指南, 首先从 Spark 官网 下载 Spark 的发行包.因为我们将不使用 HDFS, 所以你可以下载一个任何 Hadoop 版…
怎样解决python dataframe loc,iloc循环处理速度很慢的问题 1.问题说明 最近用DataFrame做大数据 处理,发现处理速度特别慢,追究原因,发现是循环处理时,loc,iloc速度都特别慢,当数据量特别大得时候真的是超级慢.查很多资料,发现没有详细说明,以下为解决办法 2.问题解决 使用 Pandas.Series.apply 方法,可以对一列数据快速进行处理 Series.apply(*func*, *convert_dtype=True*, *args=()*, **…
定义: DataFrame是二维的.大小可变的.成分混合的.具有标签化坐标轴(行和列)的表数据结构.基于行和列标签进行计算.可以被看作是为序列对象(Series)提供的类似字典的一个容器,是pandas中主要的数据结构. 形式: class pandas.DataFrame(data=None, index=None, columns=None, dtype=None, copy=False) 参数含义: data : numpy ndarray(多维数组)(结构化或同质化的), dict(字典…
我正以Python作为突破口,入门机器学习相关知识.出于机器学习实践过程中的需要,我快速了解了一下提供了类似关系型或标签型数据结构的Pandas的使用方法.下面记录相关学习笔记. 数据结构 Pandas最主要的知识点是两个数据结构,分别是Series和DataFrame.你可以分别把它们简单地理解为带标签的一维数组和二维数组. 以下实践假设已经运行了必要的import语句,如: import pandas as pd Series 先在命令行里面看一下Series的样子:   可以看到Serie…
弹性分布式数据集(Resilient Distributed Dataset,RDD) RDD是Spark一开始就提供的主要API,从根本上来说,一个RDD就是你的数据的一个不可变的分布式元素集合,在集群中跨节点分布,可以通过若干提供了转换和处理的底层API进行并行处理.每个RDD都被分为多个分区,这些分区运行在集群不同的节点上. RDD支持两种类型的操作,转化操作(transform)和行动操作(action).转化操作会有一个RDD生成一个新的RDD,行动操作则要计算出来一个结果.spark…