三维重建:SLAM算法的考题总结】的更多相关文章

参考英文维基:https://en.wikipedia.org/wiki/Slam 参考文档:视觉slam研究分析的一点认识 1. 请简单描述您对机器人的SLAM的概念理解? 答: 机器人需要在自身位置不确定的条件下,在完全未知环境中创建地图, 同时利用地图进行自主定位和导航.这就是移动机器人的同时定位与地图创建(simultaneous localization and mapping (SLAM)  ) 问题. 算法上一般分为 相机定位跟踪 和 场景地图构建 两个高度相关的部分.场景地图构建…
VSLAM研究了几十年,新的东西不是很多,三维重建的VSLAM方法可以用一篇文章总结一下. 此文是一个好的视觉SLAM综述,对视觉SLAM总结比较全面,是SLAM那本书的很好的补充.介绍了基于滤波器的方法.基于前后端的方法.且介绍了几个SensorFusion方法,总结比较全面.并且文中给出了代码的下载链接,比较方便. 原文链接:Visual SLAM算法笔记 摘抄部分,如有不适,请联系删除或者移步原文链接 一.Visual-Inertial Odometry算法笔记 名字缩写太多,我有点凌乱了…
SLAM(Simultaneous Localization and Mapping)是业界公认视觉领域空间定位技术的前沿方向,中文译名为“同步定位与地图构建”,它主要用于解决机器人在未知环境运动时的定位和地图构建问题.本次阅面科技资深研究员赵季也将从SLAM方向着手,为大家展现更深层次的技术干货. 赵季:阅面科技资深研究员.2012年获华中科技大学博士学位,2012年至2014年在CMU机器人研究所做博士后.曾在三星研究院从事深度相机.SLAM.人机交互方面的研究.目前专注于空间感知技术的研发…
Karto_slam算法是一个Graph based SLAM算法.包括前端和后端.关于代码要分成两块内容来看. 一类是OpenKarto项目,是最初的开源代码,包括算法的核心内容: https://github.com/skasperski/OpenKarto.git  之后作者应该将该项目商业化了:https://www.kartorobotics.com/ 作者是这样说的: “When I worked at SRI, we developed a 2D SLAM mapping syst…
SLAM算法分为三类:Kalman滤波.概率滤波.图优化 Kalman滤波方法包括EKF.EIF:概率滤波包括RBPF,FastSLAM是RBPF滤波器最为成功的实例, 也是应用最为广泛的SLAM方法: SLAM分为Full SLAM和Online SLAM 常见的二维激光SLAM算法 1.GMapping is a highly efficient Rao-Blackwellized particle filer to learn grid maps from laser range data…
在此因为要总结写一个文档,所以查阅资料,将总结的内容记录下来,欢迎大家指正! 文章将介绍使用的基于机器人操作系统(ROS)框架工作的SLAM算法. 在ROS中提供的五种基于2D激光的SLAM算法分别是:HectorSLAM,Gmapping,KartoSLAM,CoreSLAM和LagoSLAM.当然最后还有比较经典的google开源的cartographer,虽然不是基于ROS的但是大牛们已经将它修改为基于ROS的版本的cartographer_ros, ROS(Robot Operating…
这一节,在熟悉了Featue maps相关概念之后,我们将开始学习基于EKF的特征图SLAM算法. 1. 机器人,图和增强的状态向量 随机SLAM算法一般存储机器人位姿和图中的地标在单个状态向量中,然后通过一个递归预测和量测过程来估计状态参数.其中,预测阶段通过增量航迹估计来处理机器人的运动,并增加了机器人位姿不确定性的估计.当再次观测到Map中存储的特征后,量测阶段,或者叫更新阶段开始执行,这个过程可以改善整个的状态估计.当机器人在运动过程中观测到新特征时,便通过一个状态增强的过程将新观测的特…
版权声明:本文为博主原创文章,未经博主允许不得转载. 本系列文章旨在总结主流视觉SLAM算法的框架,对比各个算法在子模块的差异,最终提炼出融合各个算法优点的架构. PTAM[1]是视觉SLAM领域里程碑式的项目.在此之前,MonoSLAM[2]为代表的基于卡尔曼滤波的算法架构是主流,它用单个线程逐帧更新相机位置姿态和地图.地图更新的计算复杂度很高,为了做到实时处理(30Hz),MonoSLAM每帧图片只能用滤波的方法处理约10~12个最稳定的特征点.PTAM最大的贡献是提出了tracking.m…
Hector slam: Hector slam利用高斯牛顿方法解决scan-matching问题,对传感器要求较高. 缺点:需要雷达(LRS)的更新频率较高,测量噪声小.所以在制图过程中,需要robot速度控制在比较低的情况下,建图效果才会比较理想,这也是它没有回环(loop close)的一个后遗症:且在里程计数据比较精确的时候,无法有效利用里程计信息. 优点:不需要使用里程计,所以使得空中无人机及地面小车在不平坦区域建图存在运用的可行性:利用已经获得的地图对激光束点阵进行优化, 估计激光点…
我们要知道三维空间中的点在图像中的位置,就需要提取特征与特征匹配了. 1.检测特征点 2.计算描述子 3.特征匹配 1.检测特征点 我们用到的检测特征点的方法是FAST算法,最大的特点就是快! 算法原理:遍历图像,找到所有的角点.我们就拿一个角点举例,例如只拿到一个角点p,设其像素灰度值为I,取这个角点以三为半径的圆上的所有像素点,能取到16个,然后设定一个阈值t,如果连续n个像素点的灰度值都大于I+t或者都小于I-t.我们则认为其为特征点.接着计算方向:特征点与重心的角度. 2.计算描述子 描…