题意: 求组合数C(p, q) / C(r, s)结果保留5为小数. 分析: 先用筛法求出10000以内的质数,然后计算每个素数对应的指数,最后再根据指数计算答案. #include <cstdio> #include <cmath> #include <cstring> ; int pri[maxn], cnt, e[maxn]; //e记录每个素数的质数 ]; void add_interger(int n, int d) //乘以n的d次幂 { ; i <…
这道题写了两个多小时-- 首先讲一下怎么建模 我们的目的是让所有点的出度等于入度 那么我们可以把点分为两部分, 一部分出度大于入度, 一部分入度大于出度 那么显然, 按照书里的思路,将边方向后,就相当于从出度大于入度的运一个流量到 入度大于出度的点. 紫书 例题 11-13 UVa 10735(混合图的欧拉回路)(最大流) 所以我们可以把源点S到所有出度大于入度的点连一条弧, 弧的容量是出度-入度的一半 为什么容量是这样呢,等一下说 同理, 把所有入度大于出度的点和汇点T连一条弧, 弧的容量是入…
总的来说就是价值为1,时间因物品而变,同时注意要刚好取到的01背包 (1)时间方面.按照题意,每首歌的时间最多为t + w - 1,这里要注意. 同时记得最后要加入时间为678的一首歌曲 (2)这里因为要输出时间,也就是重量,那么这个时候初始化就要注意了. 因为如果只是输出价值的话就全部初始化为0,但是要输出重量,那就意味着 当前这个时间是恰好由几首歌组合,那么初始化的时候就要注意全部初始化为 -1,f[0] = 0,同时判断条件要f[j-w] != -1,这里要注意 (3)这里时间很坑!我一开…
这道题要逆向思维, 就是求出答案的一部分, 然后反过去去寻找答案存不存在. 其实很多其他题都用了这道题目的方法, 自己以前都没有发现, 这道题专门考这个方法.这个方法可以没有一直往下求, 可以省去很多时间.紫书里面把这叫做中途相遇法,双向广搜有点这个方法的味道.这里用到了二分查找, 总的时间复杂度是n的二次方乘logn #include<cstdio> #include<vector> #include<algorithm> #define REP(i, a, b) f…
紫书上有很明显的笔误, 公式写错了.g(k, i)的那个公式应该加上c(k-1)而不是c(k).如果加上c(k-1)那就是这一次 所有的红气球的数目, 肯定大于最下面i行的红气球数 我用的是f的公式, 我觉得这个稍微比f好理解一点.f(k, i) 表示k小时之后最上面i行红气球的个数. 分两种情况 如图所示 左上角的正方形的上面i行的红气球个数和前一个小时(也就是k-1)的整个正方形的上面i行的红气球个数是一样的, 因为右上角还有一个, 所以要乘2, 也就是f(k - 1, i) = 2 * f…
 这道题目可以把问题分解, 因为x坐标和y坐标的答案之间没有联系, 所以可以单独求两个坐标的答案 我一开始想的是按照左区间从小到大, 相同的时候从右区间从小到大排序, 然后WA 去uDebug找了数据, 发现这组数据过不了 3 1 1 3 3 1 1 3 3 2 2 2 2  正确输出是 1 1 3 3 1 1 2 2  我输出 IMPOSSIBLE 我发现当有包含关系的时候, 会先处理大区间而把小区间应该放的点覆盖掉了.所以我这个方法是不行滴, 然后就暂时不知道怎么改了.  之后我去看了他人的…
这道题用构造法, 就是自己依据题目想出一种可以得到解的方法, 没有什么规律可言, 只能根据题目本身来思考. 这道题的构造法比较复杂, 不知道刘汝佳是怎么想出来的, 我想的话肯定想不到. 具体思路紫书上讲得非常清楚了, 就不讲了.代码有详细注释 #include<cstdio> #include<vector> #define REP(i, a, b) for(int i = (a); i < (b); i++) using namespace std; const int M…
经过紫书的分析,已经将问题转化为求组合数C(n-1, 0)~C(n-1, n-1)中能够被m整除的个数,并输出编号(这n个数的编号从1开始) 首先将m分解质因数,然后记录下每个质因子对应的指数. 由组合恒等式,我们可以递推C(n, k)的质因数的个数. 一个没什么用的小优化:因为杨辉三角每一行都是对称的,所以我们可以求出前一半答案,然后根据对称性求出后一半的答案. 需要注意的是,如果答案中有类似C(10, 5)的数,就不要再对称了,会重复的. 这个优化貌似也只能优化0.05s左右. #inclu…
这道题感觉非常的秀 因为结果会很大,所以就质因数分解分开来算 非常的巧妙! #include<cstdio> #include<vector> #include<cstring> #include<cmath> #define REP(i, a, b) for(int i = (a); i < (b); i++) using namespace std; const int MAXN = 11234; bool is_prime[MAXN]; vect…
首先分解,然后可以发现同一个因子ai不能存在于两个以上的数中 因为求的是最小公倍数,如果有的话就可以约掉 所以数字必然由ai的pi次方的乘积组成,那么显然,在 a最小为2,而b大于2的情况下a*b>a+b 所以要让和最小,就每一个ai的pi次方作为一个数就好了. 另外注意long long,素数和1 #include<cstdio> #include<cmath> #define REP(i, a, b) for(int i = (a); i < (b); i++) u…