感知机是二类分类的线性分类模型,利用随机梯度下降法对基于误分类的损失函数进行极小化. 书中算法可以将所有样本和系数向量写成增广向量的形式,并将所有负样本乘以-1,统一形式,方便计算. (1)训练数据集线性可分时,感知机学习算法原始形式迭代收敛 (2)算法存在许多解 感知机学习算法的对偶形式使得训练过程中实例仅以内积形式出现,可以提前存储(Gram矩阵). # train = [[(3, 3), 1], [(4, 3), 1], [(1, 1), -1]] train = [[(0, 0), 1]…