opencv——均值/中值滤波器去噪】的更多相关文章

实验内容及实验原理: 1.用均值滤波器(即邻域平均法)去除图像中的噪声: 2.用中值滤波器去除图像中的噪声 3.比较两种方法的处理结果 实验步骤: 用原始图像lena.bmp或cameraman.bmp加产生的3%椒盐噪声图像合成一幅有噪声的图像并显示: 1.用均值滤波器去除图像中的噪声(选3x3窗口):以当前像素点为中心,求窗口内所有灰度值的和,以其平均值作为中心像素新的灰度值 2. 用中值滤波器去除图像中的噪声(选3x3窗口做中值滤波):以当前像素点为中心,求窗口中所有像素点的灰度值的中值,…
meanShfit均值漂移算法是一种通用的聚类算法,它的基本原理是:对于给定的一定数量样本,任选其中一个样本,以该样本为中心点划定一个圆形区域,求取该圆形区域内样本的质心,即密度最大处的点,再以该点为中心继续执行上述迭代过程,直至最终收敛. 可以利用均值偏移算法的这个特性,实现彩色图像分割,Opencv中对应的函数是pyrMeanShiftFiltering.这个函数严格来说并不是图像的分割,而是图像在色彩层面的平滑滤波,它可以中和色彩分布相近的颜色,平滑色彩细节,侵蚀掉面积较小的颜色区域,所以…
原理 Note 以下原理来源于Richard Szeliski 的著作 Computer Vision: Algorithms and Applications 以及 Learning OpenCV 平滑 也称 模糊, 是一项简单且使用频率很高的图像处理方法. 平滑处理的用途有很多, 但是在本教程中我们仅仅关注它减少噪声的功用 (其他用途在以后的教程中会接触到). 平滑处理时需要用到一个 滤波器 . 最常用的滤波器是 线性 滤波器,线性滤波处理的输出像素值 (i.e. ) 是输入像素值 (i.e…
1.图像滤波算法(cv2) https://blog.csdn.net/qq_27261889/article/details/80822270 2.…
过滤是信号和图像处理中基本的任务.其目的是根据应用环境的不同,选择性的提取图像中某些认为是重要的信息.过滤可以移除图像中的噪音.提取感兴趣的可视特征.允许图像重采样等等.频域分析将图像分成从低频到高频的不同部分.低频对应图像强度变化小的区域,而高频是图像强度变化非常大的区域.在频率分析领域的框架中,滤波器是一个用来增强图像中某个波段或频率并阻塞(或降低)其他频率波段的操作.低通滤波器是消除图像中高频部分,但保留低频部分.高通滤波器消除低频部分.参考博客:https://blog.csdn.net…
1.OpenCV 3计算机视觉:Python语言实现 https://github.com/techfort/pycv 2.OpenCV3编程入门 opencv 均值模糊:一般用来处理图像的随机噪声 中值模糊:一般用来处理图像的椒盐噪声 自定义模糊:对图像进行锐化之类的操作 高斯模糊: 减少图像层次和深度 hist1 = create_rgb_hist(image1)"""创建rgb 三通道直方图""" hist2 = create_rgb_hi…
经常用Photoshop的人应该熟悉磁力套索(Magnetic Lasso)这个功能,就是人为引导下的抠图辅助工具.在研发领域一般不这么叫,通常管这种边缘提取的办法叫Intelligent Scissors或者Livewire. 本来是给一个图像分割项目算法评估时的Python框架,觉得有点意思,就稍稍拓展了一下,用PyQt加了个壳,在非常简陋的程度上模拟了一下的磁力套索功能.为什么简陋:1) 只实现了最基本的边缘查找.路径冷却,动态训练,鼠标位置修正都没有,更别提曲线闭合,抠图,Alpha M…
原文地址http://jncumter.blog.51cto.com/812546/243961   图像去噪是数字图像处理中的重要环节和步骤.去噪效果的好坏直接影响到后续的图像处理工作如图像分割.边缘检测等.图像信号在产生.传输过程中都可能会受到噪声的污染,一般数字图像系统中的常见噪声主要有:高斯噪声(主要由阻性元器件内部产生).椒盐噪声(主要是图像切割引起的黑图像上的白点噪声或光电转换过程中产生的泊松噪声)等: 目前比较经典的图像去噪算法主要有以下三种: 均值滤波算法:也称线性滤波,主要思想…
使用Opencv中均值漂移meanShift跟踪移动目标 Opencv均值漂移pyrMeanShiftFiltering彩色图像分割流程剖析 Opencv目标跟踪—CamShift算法 MeanShift - cv.MeanShift Mean Shift均值漂移算法是无参密度估计理论的一种,无参密度估计不需要事先知道对象的任何先验知识,完全依靠训练数据进行估计,并且可以用于任意形状的密度估计,在某一连续点处的密度函数值可由该点邻域中的若干样本点估计得出. Mean shift将特征空间视为先验…
OpenCV经典的两种实现EPF方法:高斯双边和均值迁移 一:双边模糊 差异越大,越会完整保留 def bi_demo(image): dst = cv.bilateralFilter(image,0,100,15) #第二个参数d是distinct,我们若是输入了d,会根据其去算第3或4个参数,我们最好是使用第3或4个参数反算d,先设为0 cv.imshow("bi_demo",dst) src = cv.imread("./1.png") #读取图片 cv.na…