机器学习——Day 1 数据预处理】的更多相关文章

问题由来 在很多机器学习任务中,特征并不总是连续值,而有可能是分类值. 例如,考虑一下的三个特征: ["male", "female"] ["from Europe", "from US", "from Asia"] ["uses Firefox", "uses Chrome", "uses Safari", "uses Internet…
写在开头 由于某些原因开始了机器学习,为了更好的理解和深入的思考(记录)所以开始写博客. 学习教程来源于github的Avik-Jain的100-Days-Of-MLCode 英文版:https://github.com/Avik-Jain/100-Days-Of-ML-Code 中文翻译版:https://github.com/MLEveryday/100-Days-Of-ML-Code 本人新手一枚,所以学习的时候遇到不懂的会经常百度,查看别人的博客现有的资料.但是由于不同的人思维和写作风格…
上次我们使用精度评估得到的成绩是 61%,成绩并不理想,再使 recall 和 f1 看下成绩如何? 首先我们先了解一下 召回率和 f1. 真实结果 预测结果 预测结果   正例 反例 正例 TP 真正例 FN 假反例 反例 FP 假正例 TN 真反例 召回率:TP/(TP+FN) f1:2TP/(2TP+FN+FP) 我们使用scikit-learn的分类报告来查看各种其他指标: 现在我们来介绍一下缩放和中心化,他们是预处理数值数据最基本的方法,接下来,看看它们是否对模型有影响,以及怎样的影响…
Python数据预处理:机器学习.人工智能通用技术 白宁超  2018年12月24日17:28:26 摘要:大数据技术与我们日常生活越来越紧密,要做大数据,首要解决数据问题.原始数据存在大量不完整.不一致.有异常的数据,严重影响到数据建模的执行效率,甚至可能导致模型结果的偏差,因此要数据预处.数据预处理主要是将原始数据经过文本抽取.数据清理.数据集成.数据处理.数据变换.数据降维等处理后,不仅提高了数据质量,而且更好的提升算法模型性能.数据预处理在数据挖掘.自然语言处理.机器学习.深度学习算法中…
Python读写excel的工具库很多,比如最耳熟能详的xlrd.xlwt,xlutils,openpyxl等.其中xlrd和xlwt库通常配合使用,一个用于读,一个用于写excel.xlutils结合xlrd可以达到修改excel文件目的.openpyxl可以对excel文件同时进行读写操作. 而说到数据预处理,pandas就体现除了它的强大之处,并且它还支持可读写多种文档格式,其中就包括对excel的读写.本文重点就是介绍pandas对excel数据集的预处理. 机器学习常用的模型对数据输入…
数据预处理是机器学习中最基础也最麻烦的一部分内容 在我们把精力扑倒各种算法的推导之前,最应该做的就是把数据预处理先搞定 在之后的每个算法实现和案例练手过程中,这一步都必不可少 同学们也不要嫌麻烦,动起手来吧 基础比较好的同学也可以温故知新,再练习一下哈 闲言少叙,下面我们六步完成数据预处理 其实我感觉这里少了一步:观察数据 [此处输入图片的描述][1] 这是十组国籍.年龄.收入.是否已购买的数据 有分类数据,有数值型数据,还有一些缺失值 看起来是一个分类预测问题 根据国籍.年龄.收入来预测是够会…
对于学习机器学习算法来说,肯定会涉及到数据的处理,因此一开始,对数据的预处理进行学习 对于数据的预处理,大概有如下几步: 步骤1 -- 导入所需库 导入处理数据所需要的python库,有如下两个库是非常重要的两个库,每次必导入 numpy 该库包含数学函数功能的库 pandas 该库用于导入和管理数据集 步骤2 -- 导入数据集 数据集通常以 .csv 格式进行保存,csv文件是以普通文本的形式存储列表数据,文件中每一行是一个数据记录. 对于csv文件,使用pandas模块中的 read_cvs…
缺失值 机器学习和数据挖掘中所使用的数据,永远不可能是完美的.很多特征,对于分析和建模来说意义非凡,但对于实际收集数据的人却不是如此,因此数据挖掘之中,常常会有重要的字段缺失值很多,但又不能舍弃字段的情况.因此,数据预处理中非常重要的一项就是处理缺失值. import pandas as pd data = pd.read_csv(r"C:\work\learnbetter\micro-class\ week 3 Preprocessing\Narrativedata.csv",ind…
1 数据无量纲化 在机器学习算法实践中,我们往往有着将不同规格的数据转换到同一规格,或不同分布的数据转换到某个特定分布的需求,这种需求统称为将数据“无量纲化”.譬如梯度和矩阵为核心的算法中,譬如逻辑回归,支持向量机,神经网络,无量纲化可以加快求解速度:而在距离类模型,譬如K近邻,K-Means聚类中, 无量纲化可以帮我们提升模型精度,避免某一个取值范围特别大的特征对距离计算造成影响.(一个特例是决策树和树的集成算法们,对决策树我们不需要无量纲化,决策树可以把任意数据都处理得很好.) 数据的无量纲…
机器学习PAL数据预处理 本文介绍如何对原始数据进行数据预处理,得到模型训练集和模型预测集. 前提条件 完成数据准备,详情请参见准备数据. 操作步骤 登录PAI控制台. 在左侧导航栏,选择模型开发和训练 > Studio-可视化建模.在PAI可视化建模页面,单击进入机器学习.                                                                                                               …