MongoDB Map Reduce】的更多相关文章

MongoDB Map Reduce Map-Reduce是一种计算模型,简单的说就是将大批量的工作(数据)分解(MAP)执行,然后再将结果合并成最终结果(REDUCE). MongoDB提供的Map-Reduce非常灵活,对于大规模数据分析也相当实用. MapReduce 命令 以下是MapReduce的基本语法: >db.collection.mapReduce( function() {emit(key,value);}, //map 函数 function(key,values) {re…
需求说明 用Map&Reduce计算几个班级中,每个班级10岁和20岁之间学生的数量: 需求分析 学生表的字段: db.students.insert({classid:1, age:14, name:'Tom'}) 将classid随机1和2.age在8-25岁之间随机,name在3-7个字符之间随机. 数据写入 数据写入java脚本 往mrtask库中students写入1000万条数据: package org.test; import java.util.ArrayList; impor…
private void AccountInfo() { ls.Clear(); DateTime dt = DateTime.Now.Date; IMongoQuery query = Query<mtime_time>.GTE(p => p.showdate, dt); MapReduceOutput output = new MapReduceOutput("mtime_time_tem"); MongoCollection comcol = MongoFact…
介绍 Map-Reduce是一种计算模型,简单的说就是将大批量的工作分解(MAP)执行,然后再将结果合并成最终结果(REDUCE). MongoDB提供的Map-Reduce非常灵活,对于大规模数据分析也相当实用. 基本语法 >db.collection.mapReduce( function() {emit(key,value);}, //map 函数 function(key,values) {return reduceFunction}, //reduce 函数 { out: collec…
分组统计:group() 简单聚合:aggregate() 强大统计:mapReduce() Group函数: 1.不支持集群.分片,无法分布式计算 2.需要手写聚合函数的业务逻辑 curr指当前行,每更改一行,curr会变 result指的是当前组,每更改一组,result会变,返回的就是result的参数 查询每个栏目下的商品数量 1 2 3 4 5 6 7 8 db.goods.group({ key:{cat_id:1}, cond:{}, reduce:function(curr,re…
上一节分析了Job由JobClient提交到JobTracker的流程,利用RPC机制,JobTracker接收到Job ID和Job所在HDFS的目录,够早了JobInProgress对象,丢入队列,另一个线程从队列中取出JobInProgress对象,并丢入线程池中执行,执行JobInProgress的initJob方法,我们逐步分析. public void initJob(JobInProgress job) { if (null == job) { LOG.info("Init on…
1.1函数式编程 面向过程编程:我们通过把大段代码拆成函数,通过一层一层的函数,可以把复杂的任务分解成简单的任务,这种一步一步的分解可以称之为面向过程的程序设计.函数就是面向过程的程序设计的基本单元. 函数式编程:是使用一系列函数去解决问题,函数式编程就是根据编程的范式来的出想要的结果,只要是输入时确定的,输出就是确定的. 1.2高阶函数 能把函数作为参数传入,这样的函数就称为高阶函数. 1.2.1函数即变量 以python的内置函数print()为列,调用该函数一下代码 >>> pri…
1.filter filter(function,sequence) 对sequence中的item依次执行function(item),将执行的结果为True(符合函数判断)的item组成一个list.string.tuple(根据sequence类型决定)返回. #!/usr/bin/env python # encoding: utf-8 """ @author: 侠之大者kamil @file: filter.py @time: 2016/4/9 22:03 &quo…
作者:Coldwings链接:https://www.zhihu.com/question/29936822/answer/48586327来源:知乎著作权归作者所有,转载请联系作者获得授权. 简单的说就是问题可以划分成若干单元,每个单元的计算互不相关,单元计算结果可以在可以承受的时间内合成为总结果的计算.再说直白一点:所有分治模型都可交由hadoop解决.可以说spark是功能更全面的hadoop,支持一些诸如filter.group之类的操作,但是原本思想仍是map reduce,差别不太大…
python基础——map/reduce Python内建了map()和reduce()函数. 如果你读过Google的那篇大名鼎鼎的论文“MapReduce: Simplified Data Processing on Large Clusters”,你就能大概明白map/reduce的概念. 我们先看map.map()函数接收两个参数,一个是函数,一个是Iterable,map将传入的函数依次作用到序列的每个元素,并把结果作为新的Iterator返回. 举例说明,比如我们有一个函数f(x)=…