6.18 省选模拟赛 字符串 LCT SAM】的更多相关文章

LINK:字符串 看起来很难做 考虑一种暴力 建立SAM后每次查询暴力扫儿子. 期望得分10分.实际得分10分. 另外一种发现每次扫儿子过于暴力 可以每次儿子向上做贡献 每次都暴力向上跳. 期望得分10分.实际得分100分. 由此可以发现玄学的暴力非常的强大 可能这就是所谓的暴力出奇迹吧. 考虑离线:这样就可以把SAM给建出来了 进一步的 每次询问是查询子树和. 每次修改是单点修改 可以利用线段树维护dfs序就做完了. 不过其中存在细节 分裂的节点是影响答案的统计的. 怎么处理分裂的节点?注意到…
发现和SDOI2017树点涂色差不多 但是当时这道题模拟赛的时候不会写 赛后也没及时订正 所以这场模拟赛的这道题虽然秒想到了LCT和线段树但是最终还是只是打了暴力. 痛定思痛 还是要把这道题给补了. 但是对于这道题来说 暴力还是有价值的. 考虑20分 每次暴力dfs. 考虑对于树是随机生成的 那么期望高度为logn 我们发现每次修改只用修改到1 也就是说每次暴力修改颜色的话只需要logn的时间复杂度. 考虑如何动态维护子树内的值 考虑修改一个点的颜色 子树内之前和它颜色一样的点 显然子树内部整体…
LINK:树 考虑暴力 保存每个版本的父亲 然后暴力向上跳.得分20. 考虑离线 可以离线那么就可以先把树给搞出来 然后考虑求k级祖先 可以倍增求. 如何判断合法 其实要求路径上的边的时间戳<=当前时间戳 这个也可以倍增做. 当然我脑抽了 把询问版本排序后利用并查集判连通性了. 考虑正解:这下就有两个方向了: 一个是倍增数组的问题 容易想到如果倍增数组可以求出 那么问题迎刃而解 倍增数组每个位置最多被更新一次 所以每次暴力判断是否可以更新 递归来做这个事情. 复杂度不太能证明. 还有一个是 如果…
容易写出nQ的暴力 由于数据是期望的时间 所以直接dfs可以跑的很快 可以拿到70分. 当然 可以进一步优化暴力 使用换根dp 然后可以将暴力优化到n^2. const int MAXN=300010; int n,Q,T,len,maxx; int lin[MAXN],d[MAXN],ver[MAXN<<1],nex[MAXN<<1]; inline void add(int x,int y) { ver[++len]=y; nex[len]=lin[x]; lin[x]=len…
算是一道很毒瘤的题目 考试的时候码+调了3h才搞定. op==1 显然是快速幂. op==2 有些点可以使用BSGS 不过后面的点是EXBSGS. 这个以前学过了 考试的时候还是懵逼.(当时还是看着花姐姐的题解学的 为了起到再次复习的作用 我决定 再推导一遍. 对于高次同余方程 \(a^x\equiv b(mod p)\) 朴素的BSGS利用是欧拉定理的应用解决的.此时要求(a,p)=1. 考虑解决(a,p)>1的情况 容易发现我们进行一些操作 使得他们互质就可以继续使用EXBSGS了. 当b%…
LINK:波波老师 LINK:同bzoj 1396 识别子串 不过前者要求线性做法 后者可以log过.实际上前者也被我一个log给水过了. 其实不算很水 我自认跑的很快罢了. 都是求经过一个位置的最短的 在整个字符串中只出现过一次的子串. SAM很容易完成这个东西. 考虑对于计算每个节点的贡献 容易发现是一个区间整体赋值和一个等差数列 不过太懒了不想维护这个等差数列 我反着建SAM维护最右左端点了. 就变成了两个区间最值问题.完全可以标记永久化 可能有点卡空间. 当然考场上也思考了O(n)的做法…
今天是[LnOI2019]长脖子鹿省选模拟赛的时间,小编表示考的不怎么样,改了半天也只会改第一题,那也先呈上题解吧. T1:P5248 [LnOI2019SP]快速多项式变换(FPT) 一看这题就很手软,没有告诉具体多项式到底有多少项,只好一个一个暴力枚举,但是这也不现实,于是小编就开始骗分,还一分也没骗着.赛后小编看到的题解,才明白这是一道转进制的题,将十进制转换成m进制,m^0,m^1,m^2这不刚好对应上m进制的单位吗?所得结果刚好就是问题的解.那么用短除法模拟算出m进制下f(m)的每一位…
18/9/21模拟赛 期望得分:100:实际得分:0  qwq 拿到题目第一眼,我去,这不是洛谷原题(仓鼠找Sugar)吗 又多看了几眼,嗯,对,除了是有多组数据外,就是原题 然后码码码....自以为写的很对 qwq 评测结束后...为什么我T1没有输出啊啊啊... 经某童鞋帮忙,发现 第一次被文件输入输出坑 qwqwq... 加上后就A了,白丢100 pts 蓝瘦 思路:树剖分别求LCA,然后判断LCA是否在另一条路径上 不要忘记清空数组! #include <algorithm> #inc…
目录 @description@ @solution@ @accepted code@ @details@ @description@ 一棵 k-超级树(k-SuperTree) 可按如下方法得到:取一棵深度为 k 的满二叉树,对每个节点向它的所有祖先连边(如果这条边不存在的话). 例如,下面是一个 4-超级树: 请统计一棵 k-超级树 中有多少条不同的简单有向路径,对 mod 取模. input 一行两整数 k, mod. output 一行一整数表示答案. example input1: 2…
LINK:小B的图 这道题就比较容易了. 容易想到将询问离线 然后 从小到大排序 那么显然是优先放正图(x+k)的边. 考虑随着x的增大 那么负图上的边会逐渐加进来 一条边被加进来当且仅当 其权值小于其能影响到的某条边的权值. 这样 随便列一个不等式就可以解出下界. 值得注意的是 加边的时候 肯定是x较小的先加 所以这个也要排序. 一个需要证明的地方是:虽然x较小的先加 但事实上可能x较大的先加上去了. 这个时候 是否会影响到x较小的加边情况呢? 答案是否定的 考虑较大的可以先加进来 当且仅当…