郑重声明:原文参见标题,如有侵权,请联系作者,将会撤销发布! arXiv:2007.08794v1 [cs.LG] 17 Jul 2020 Abstract 强化学习(RL)算法根据经过多年研究手动发现的几种可能规则之一来更新智能体的参数.从数据中自动发现更新规则可能会导致效率更高的算法,或者更适合特定环境的算法.尽管已经进行了尝试来应对这一重大的科学挑战,但是仍然存在一个未决的问题,即发现RL基本概念的替代方法(例如价值函数和时序差分学习)是否可行.本文介绍了一种新的元学习方法,该方法通过与一…
Byte Tank Posts Archive Deep Reinforcement Learning: Playing a Racing Game OCT 6TH, 2016 Agent playing Out Run, session 201609171218_175epsNo time limit, no traffic, 2X time lapse Above is the built deep Q-network (DQN) agent playing Out Run, trained…
Apparently, this ongoing work is to make a preparation for futural research on Deep Reinforcement Learning. The goal of this work is to build a simulation platform that can insert the Deep Reinforcement Learning algorithms as a robot motion planning…
Awesome Reinforcement Learning A curated list of resources dedicated to reinforcement learning. We have pages for other topics: awesome-rnn, awesome-deep-vision, awesome-random-forest Maintainers: Hyunsoo Kim, Jiwon Kim We are looking for more contri…
Asynchronous Methods for Deep Reinforcement Learning ICML 2016 深度强化学习最近被人发现貌似不太稳定,有人提出很多改善的方法,这些方法有很多共同的 idea:一个 online 的 agent 碰到的观察到的数据序列是非静态的,然后就是,online的 RL 更新是强烈相关的.通过将 agent 的数据存储在一个 experience replay 单元中,数据可以从不同的时间步骤上,批处理或者随机采样.这种方法可以降低 non-st…
在机器学习中,我们经常会分类为有监督学习和无监督学习,但是尝尝会忽略一个重要的分支,强化学习.有监督学习和无监督学习非常好去区分,学习的目标,有无标签等都是区分标准.如果说监督学习的目标是预测,那么强化学习就是决策,它通过对周围的环境不断的更新状态,给出奖励或者惩罚的措施,来不断调整并给出新的策略.简单来说,就像小时候你在不该吃零食的时间偷吃了零食,你妈妈知道了会对你做出惩罚,那么下一次就不会犯同样的错误,如果遵守规则,那你妈妈兴许会给你一些奖励,最终的目标都是希望你在该吃饭的时候吃饭,该吃零食…
随着AlphaGo和AlphaZero的出现,强化学习相关算法在这几年引起了学术界和工业界的重视.最近也翻了很多强化学习的资料,有时间了还是得自己动脑筋整理一下. 强化学习定义 先借用维基百科上对强化学习的标准定义: 强化学习(Reinforcement Learning,简称RL)是机器学习中的一个领域,强调如何基于环境而行动,以取得最大化的预期利益. 从本质上看,强化学习是一个通用的问题解决框架,其核心思想是 Trial & Error. 强化学习可以用一个闭环示意图来表示: 强化学习四元素…
Introduction to Learning to Trade with Reinforcement Learning http://www.wildml.com/2018/02/introduction-to-learning-to-trade-with-reinforcement-learning/ Thanks a lot to @aerinykim, @suzatweet and @hardmaru for the useful feedback! The academic Deep…
http://www.wildml.com/2015/12/implementing-a-cnn-for-text-classification-in-tensorflow/ The academic Deep Learning research community has largely stayed away from the financial markets. Maybe that’s because the finance industry has a bad reputation,…
郑重声明:原文参见标题,如有侵权,请联系作者,将会撤销发布! arXiv:1902.08102v1 [stat.ML] 21 Feb 2019 Abstract 我们通过递归估计回报分布的统计量,提供了一个统一的框架,用于设计和分析分布强化学习(DRL)算法.我们的主要见识在于,可以将DRL算法分解为一些统计量估计和一种方法的组合,该方法插补与该统计集一致的回报分布.有了这种新的理解,我们就能对现有DRL算法进行改进的分析,并基于对回报分布期望的估计来构造新的算法(EDRL).我们将EDRL与各…