一.Abstract综述 训练出一个CNN可以同时实现分类,定位和检测..,三个任务共用同一个CNN网络,只是在pool5之后有所不同 二.分类 这里CNN的结构是对ALEXNET做了一些改进,具体的在论文中都说了,就不再赘述了.说几个关键的地方. 1.之前在多尺度的情况下,Krizhevsky用的是multi—view的方法,也就是对给定的图片分别取四个角,中间以及翻转的图块输入到CNN中,得到的结果取均值.这个方法的缺陷在于有些区域的组合会被忽略(比如   ground truth在中间偏右…
论文标题:OverFeat: Integrated Recognition, Localization and Detection using Convolutional Networks 标题翻译:OverFeat:使用卷积神经网络集成识别,定位和检测 论文作者:Pierre Sermanet  David Eigen  Xiang Zhang  Michael Mathieu  Rob Fergus  Yann LeCun 论文地址:https://arxiv.org/pdf/1312.62…
目录 概 主要内容 Sermanet P., Eigen D., Zhang X., Mathieu M., Fergus R., LeCun Y. OverFeat:integrated recognition, localization and detection using convolutional networks. In International Conference on Learning Representations (ICLR), 2014. 概 通常的sliding wi…
2014 ICLR 纽约大学 LeCun团队 Pierre Sermanet, David Eigen, Xiang Zhang, Michael Mathieu, Rob Fergus, Yann LeCun 简单介绍(What) Ovefeat是2013年ImageNet定位任务的冠军,同时在分类和检测任务也取得了不错的结果. 它用一个共享的CNN来同时处理图像分类,定位,检测三个任务,可以提升三个任务的表现. 它用CNN有效地实现了一个多尺度的,滑动窗口的方法,来处理任务. 提出了一种方法…
一点最重要的学习方法:  当你读一篇论文读不懂时,如果又读了两遍还是懵懵懂懂时怎么办???方法就是别自己死磕了,去百度一下,如果是很好的论文,大多数肯定已经有人读过并作为笔记了的,比如我现在就把我读过以后的收获记下来(我也看了好几篇前人的博文的)...百度没有去试试google吧...如何快速读懂读明白一篇文章也是一种能力,选择的方法往往大于努力的. 对于这篇论文,网上有很多写的好的总结,大家可以去看,以下我写的内容零零散散,建议大家不要浪费时间看了哦. 文章基于 ILSVRC2013 的数据集…
论文标题:Rich feature hierarchies for accurate object detection and semantic segmentation 标题翻译:丰富的特征层次结构,可实现准确的目标检测和语义分割 论文作者:Ross Girshick Jeff Donahue Trevor Darrell Jitendra Mali 论文地址:http://fcv2011.ulsan.ac.kr/files/announcement/513/r-cnn-cvpr.pdf RC…
论文标题:Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition 标题翻译:用于视觉识别的深度卷积神经网络中的空间金字塔池 论文作者:Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun 论文地址:https://arxiv.org/pdf/1406.4729.pdf SPP的GitHub地址:https://github.com/yueruc…
论文标题:Fast R-CNN 论文作者:Ross Girshick 论文地址:https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Girshick_Fast_R-CNN_ICCV_2015_paper.pdf https://arxiv.org/pdf/1504.08083.pdf Fast RCNN 的GitHub地址:https://github.com/rbgirshick/fast-rcnn 参考的Fast…
论文标题:Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks 标题翻译:基于区域提议(Region  Proposal)网络的实时目标检测 论文作者:Shaoqing Ren, Kaiming He, Ross Girshick, Jian Sun 论文地址:https://arxiv.org/abs/1506.01497 Faster RCNN 的GitHub地址:https://gith…
论文标题:SSD: Single Shot MultiBox Detector 论文作者:Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed, Cheng-Yang Fu,Alexander C. Berg 论文地址:https://arxiv.org/abs/1512.02325 SSD 的GitHub地址:https://github.com/balancap/SSD-Tensorflow 参考的S…