P4981 父子 Cayley公式】的更多相关文章

CayleyCayley公式的定义是这样的,对于n个不同的节点,能够组成的无根树(原来是无向连通图或者是有标志节点的树)的种数是n^(n-2)种.(这里让大家好理解一点,就写成了无根树,其实应该是一样的概念) 那么我们的初步问题就解决了,接下来就是解决无根树和有根树之间的转换. 但是转换很难吗?把有根树转换成根节点有nn种情况的无根树,也就是n^(n-2) * n,化简就是n^(n-1).答案也就是这个玩意了. 因为这道题,n比较大,所以就用一下快速幂. #include <iostream>…
prufer编码 当然你也可以理解为 Cayley 公式,其实这个公式就是prufer编码经过一步就能推出的 P4430 小猴打架 P4981 父子 这俩题差不多 先说父子,很显然题目就是让你求\(n\)个点的有根树有几条 \(n\)个点的无根树的 prufer 编码有\(n-2\)位,且编码和树一一对应并且每一位可以重复 那么就有\(n^{n-2}\)种构造无根树的方法 所以,就让每一个节点轮流当根,所以答案就是\(n^{n-2}\times n=n^{n-1}\) #include<cstd…
先安利一发.让我秒懂.. 第一次讲这个是在寒假...然而当时秦神太巨了导致我这个蒟蒻自闭+颓废...早就忘了这个东西了... 结果今天老师留的题中有两道这种的:Luogu P4981 P4430 然后决定了解一下... 一.Prufer序列 Prufer序列,可以用来解一些关于无根树计数的问题. Prufer序列是一种无根树的编码表示,对于一棵n个节点带编号的无根树,对应唯一一串长度为n-1的Prufer编码,这性质很好. 1.无根树转化为Prufer序列 首先定义无根树中度数为1的节点是叶子节…
原文出处:https://www.cnblogs.com/dirge/p/5503289.html 树的计数 + prufer序列与Cayley公式 学习笔记(转载) 首先是 Martrix67 的博文:http://www.matrix67.com/blog/archives/682 然后是morejarphone同学的博文:http://blog.csdn.net/morejarphone/article/details/50677172 因为是偶然翻了他的这篇博文,然后就秒会了. pruf…
最近学习了Prüfer编码与Cayley公式,这两个强力的工具一般用于解决树的计数问题.现在博主只能学到浅层的内容,只会用不会证明. 推荐博客:https://blog.csdn.net/morejarphone/article/details/50677172 (Prüfer编码与树的转换) https://www.cnblogs.com/dirge/p/5503289.html (几类树的计数问题) 主要的知识还是挺少的, 树转成Prufer编码:找到当前叶子节点中编号最小的那个点x,输出与…
Cayley 公式的一些广为人知的证法: Prufer 序列 Matrix-Tree 定理 然而我都不会 233,所以下面说一个生成函数角度的证法 . 我们知道 \(n\) 个节点的有标号无根树有 \(n^{n-2}\) 种,即 Cayley 公式 . 具体数学的做法是考虑递推完全图生成树个数,然后推出 EGF 的关系 . 那个递推太牛逼了,我就不这么干了,先令 \(g_n\) 表示 \(n\) 个节点的有标号有根树个数(\(g_0=0\)),且其 EGF 为 \(G(z)\) . 钦定一个根,…
题目背景 上演在各大学男生寝室的日常 :: A :A: "我没带纸,快来厕所救我!" B :B: "叫爸爸." A :A: "爸爸!" ........................................................................................ A :A: "我没钱了,能借我点吗." B :B: "叫爸爸." A :A: "爸爸!…
首先是 Martrix67 的博文:http://www.matrix67.com/blog/archives/682 然后是morejarphone同学的博文:http://blog.csdn.net/morejarphone/article/details/50677172 因为是偶然翻了他的这篇博文,然后就秒会了. prufer数列,可以用来解一些关于无根树计数的问题. prufer数列是一种无根树的编码表示,对于一棵n个节点带编号的无根树,对应唯一一串长度为n-1的prufer编码. (…
题目描述 对于全国各大大学的男生寝室,总是有各种混乱的父子关系. 那么假设现在我们一个男生寝室有不同的 nn 个人,每个人都至多有一个“爸爸”,可以有多个“儿子”,且有且只有一个人没有“爸爸”(毕竟是室长,还是要给点面子,当然了,室长人人当嘛). 那么现在问题来了,对于一个有 nn 个人的寝室,最多可能存在多少种父子关系,当然每个人之间都必须要有直接或间接的父子关系. 输入输出格式 输入格式: 第一行一个 正整数 tt,表示有组数据. 接下来 tt 行,每行一个整数 nn,表示有 nn 个人.…
看到\(purfer\)序列板子后,想到这个名词在哪见过,于是找到了一个题,还带出一个: \(T1\). 题目链接:P4430 小猴打架 开始极其懵逼,考虑过大力容斥,但还是失败了,原来是: Cayley定理(凯莱,反正是个神犇就对了): \(n\)个节点的带标号的形态不同的无根树有\(n^{n-2}\)个, 再乘上\((n-1)!\)种生成方式即可, \[ans=(n-1)!×n^{n-2}\] 时间复杂度\(O(n+logn)\),你要是会快速阶乘,就可以\(O(logn)\)了. \(Co…