pytorch tensor 维度理解.md】的更多相关文章

torch.randn torch.randn(*sizes, out=None) → Tensor(张量) 返回一个张量,包含了从标准正态分布(均值为0,方差为 1)中抽取一组随机数,形状由可变参数sizes定义. 参数: sizes (int...) – 整数序列,定义了输出形状 out (Tensor, optinal) - 结果张量 二维 >>> import torch >>> torch.randn(2,3) tensor([[-1.0413, 0.8792…
http://wossoneri.github.io/2017/11/15/[Tensorflow]The-dimension-of-Tensor/ Tensor维度理解 Tensor在Tensorflow中是N维矩阵,所以涉及到Tensor的方法,也都是对矩阵的处理.由于是多维,在Tensorflow中Tensor的流动过程就涉及到升维降维,这篇就通过一些接口的使用,来体会Tensor的维度概念.以下是个人体会,有不准确的请指出. tf.reduce_mean reduce_mean( inp…
维度扩展 x.unsqueeze(n) 在 n 号位置添加一个维度 例子: import torch x = torch.rand(3,2) x1 = x.unsqueeze(0) # 在第一维的位置添加一个维度 x2 = x.unsqueeze(1) # 在第二维的位置添加一个维度 x3 = x.unsqueeze(2) # 在第三维的位置添加一个维度 print(x1.shape) print(x2.shape) print(x3.shape) >> torch.Size([1, 3, 2…
具体示例如下,注意观察维度的变化 #coding=utf-8 import torch """改变tensor的形状的四种不同变化形式""" def change_tensorSize(): x=torch.randn(2,4,3) s=x.transpose(1,2) y=x.view(2,3,4) z=x.permute(0,2,1) print(x) print(y) print(z) #expand_as #tensor.t()只能转化…
获取Tensor维度的两种方法: Tensor.get_shape() 返回TensorShape对象, 如果需要确定的数值而把TensorShape当作list使用,肯定是不行的. 需要调用TensorShape的as_list()方法, 需要调用TensorShape.as_list()方法来获取维度数值. 来实践一下: import tensorflow as tf a = tf.zeros(shape=[10,20]) b = a.get_shape() c = b.as_list()…
Tensor类的成员函数dim()可以返回张量的维度,shape属性与成员函数size()返回张量的具体维度分量,如下代码定义了一个两行三列的张量: f = torch.randn(2, 3) print(f.dim()) print(f.size()) print(f.shape) 输出结果: 2 torch.Size([2, 3]) torch.Size([2, 3]) dim=0的标量 维度为0的Tensor为标量,标量一般用在Loss这种地方.如下代码定义了一个标量: import to…
https://pytorch.org/docs/stable/tensors.html dtype: tessor的数据类型,总共有8种数据类型,其中默认的类型是torch.FloatTensor,而且这种类型的别名也可以写作torch.Tensor. device: 这个参数表示了tensor将会在哪个设备上分配内存.它包含了设备的类型(cpu.cuda)和可选设备序号.如果这个值是缺省的,那么默认为当前的活动设备类型. require_grad: 这个标志表明这个tensor的操作是否会被…
维度变换是tensorflow中的重要模块之一,前面mnist实战模块我们使用了图片数据的压平操作,它就是维度变换的应用之一. 在详解维度变换的方法之前,这里先介绍一下View(视图)的概念.所谓View,简单的可以理解成我们对一个tensor不同维度关系的认识.举个例子,一个[ b,28,28,1 ]的tensor(可以理解为mnist数据集的一组图片),对于这样一组图片,我们可以有一下几种理解方式: (1)按照物理设备储存结构,即一整行的方式(28*28)储存,这一行有连续的784个数据,这…
对于dp,我目前的理解就是,干成题目中的那件事需要作出若干次决策,然后你要取其中最优的结果,我们可以用深搜来递归地找最优解,然后我们来观察一下这个递归树的形状,如果它能从底往上直接递推的话,就不用递归了,直接递推迭代到结果.. 当你不知道哪个决策最优时,我的解决方法是,那我们就遍历所有决策,从中选择最优的,当你用深搜遍历所有决策时,题目中的条件或者你自己推的结论可以帮助你进行dfs剪枝  还有一种方法是,假设你能找到贪心的决策,每次就能贪心地选择某决策  并且,能DP的前提条件是顺序正确,你递推…
Tensor即张量,在tensorflow中所有的数据都通过张量流来传输,在看代码的时候,对张量的概念很不解,很容易和矩阵弄混,今天晚上查了点资料,并深入了解了一下,简单总结一下什么是张量的阶,以及张量的shape是什么? 在tensorflow中,张量的维数被描述为“阶”,张量是以list的形式存储的.list有几重中括号,对应的张量就是几阶.如t=[ [1,2,3],[4,5,6],[7,8,9] ],t就是一个二阶张量. 我们可以认为,一阶张量,如[1,2,3],相当于一个向量,二阶张量,…
tf.argmax takes two arguments: input and dimension. example: tf.argmx(arr, dimension = 1). or tf.argmax(arr, 1). let arr is ndarray wrong: Since the indices of array arr are arr[rows, columns], I would expect tf.argmax(arr, 0) to return the index of…
2018.4.25,Facebook 推出了 PyTorch 0.4.0 版本,在该版本及之后的版本中,torch.autograd.Variable 和 torch.Tensor 同属一类.更确切地说,torch.Tensor 能够追踪日志并像旧版本的 Variable 那样运行; Variable 封装仍旧可以像以前一样工作,但返回的对象类型是 torch.Tensor.这意味着我们的代码不再需要变量封装器. 相关链接: PyTorch 重磅更新,不只是支持 Windows PyTorch简…
切片方式与numpy是类似. * a[:2, :1, :, :], * 可以用-1索引. * ::2,表示所有数据,间隔为2,即 start:end:step. *  a.index_select(1,torch.tensor([2])) # 1表示维度,后面是索引(必须是tensor格式,想连续选取可以用tensor.arange()) * 三个点(...): 表示取最大维度的数据,不用输入很多的(:,:,) 比如下面的数据三个点...可以代替中间的维度,并且两边数据是相等的: * torch…
从官网拷贝过来的,就是做个学习记录.版本 0.4 tensor to numpy a = torch.ones(5) print(a) 输出 tensor([1., 1., 1., 1., 1.]) 进行转换 b = a.numpy() print(b) 输出 [1. 1. 1. 1. 1.] 注意,转换后的tensor与numpy指向同一地址,所以,对一方的值改变另一方也随之改变 a.add_(1) print(a) print(b) numpy to tensor import numpy…
实际运用例子: https://zhuanlan.zhihu.com/p/35709485 pytorch CrossEntropyLoss,参考博客如下: https://mathpretty.com/12068.html https://blog.csdn.net/wyyang2/article/details/109218251?utm_medium=distribute.pc_relevant.none-task-blog-title-2&spm=1001.2101.3001.4242…
Spring的事件(Application Event)为Bean与Bean之间的信息通讯提供了支持.当一个Bean处理完一个任务之后,希望另一Bean指定并能做相应的处理,这时我们就需要让另外一个Bean监听当期Bean所发送的事件. 通过上述基本信息可知,Spring的事件需要遵循如下流程: (1) 自定义事件,继承ApplicationEvent; (2)定义事件监听器,实现ApplicationListener; (3)使用容器发布事件. 可以理解以上的流程就是Spring默认的事件生效…
out.squeeze(dim=1) out.squeeze_(dim=1)…
一些基础的操作: import torch as th a=th.rand(3,4) #随机数,维度为3,4的tensor b=th.rand(4)print(a)print(b) a+b tensor([[0.3777, 0.4128, 0.6244, 0.7772], [0.0859, 0.9350, 0.1705, 0.9116], [0.4136, 0.1211, 0.5960, 0.8962]]) tensor([0.5063, 0.4809, 0.4810, 0.4716]) ten…
1. torch.renorm(input, p, dim, maxnorm, out=None) → Tensor Returns a tensor where each sub-tensor of input along dimension dim is normalized such that the p-norm of the sub-tensor is lower than the value maxnorm. 解释:返回一个张量,包含规范化后的各个子张量,使得沿着dim维划分的各子张…
1.TensorFlow中Tensor维度理解: (1)对于2维Tensor 0维对应列 1维对应行 (2)维度操作举例: 对于k维的,tf.reduce_sum(x, axis=k-1)的结果是对最里面一维所有元素进行求和. tf.reduce_sum(x, axis=k-2)是对倒数第二层里的向量对应的元素进行求和. tf.reduce_sum(x, axis=k-3)把倒数第三层的每个向量对应元素相加. 2.tensorflow中用来拼接张量的函数tf.concat(),用法: tf.co…
摘要:Tensor,它可以是0维.一维以及多维的数组,你可以将它看作为神经网络界的Numpy,它与Numpy相似,二者可以共享内存,且之间的转换非常方便. 本文分享自华为云社区<Tensor:Pytorch神经网络界的Numpy>,作者: 择城终老 . Tensor Tensor,它可以是0维.一维以及多维的数组,你可以将它看作为神经网络界的Numpy,它与Numpy相似,二者可以共享内存,且之间的转换非常方便. 但它们也不相同,最大的区别就是Numpy会把ndarray放在CPU中进行加速运…
原文:https://blog.csdn.net/hustchenze/article/details/79154139 Pytorch的数据类型为各式各样的Tensor,Tensor可以理解为高维矩阵.与Numpy中的Array类似.Pytorch中的tensor又包括CPU上的数据类型和GPU上的数据类型,一般GPU上的Tensor是CPU上的Tensor加cuda()函数得到.通过使用Type函数可以查看变量类型.一般系统默认是torch.FloatTensor类型.例如data = to…
broadcasting是tensorflow中tensor维度扩张的最常用的手段,指对某一个维度上重复N多次,虽然它呈现数据已被扩张,但不会复制数据. 可以这样理解,对 [b,784]@[784,10]+[10]这样一个操作([10]可以理解为偏置项),那么原式可以化为[b,10]+[10],但是[b,10]和[10]这两个tensor是不能直接相加的,两者必须化为相一致维度的单元才能相加,即,把[10]扩张为[b,10],两者才能相加,而broadcasting做的就是这样一件事. 如果上面…
原文地址: https://blog.csdn.net/u011668104/article/details/82718375 --------------------------------------------------------------------------------------------- opencv读取彩色图片:BGR,(h,w,c) 例如: cv2.imread(‘test.jpg’) Skimage读彩色图片:RGB,(h,w,c) 例如: from skimag…
斯坦福大学博士生与 Facebook 人工智能研究所研究工程师 Edward Z. Yang 是 PyTorch 开源项目的核心开发者之一.他在 5 月 14 日的 PyTorch 纽约聚会上做了一个有关 PyTorch 内部机制的演讲,本文是该演讲的长文章版本. 大家好!今天我想谈谈 PyTorch 的内部机制. 这份演讲是为用过 并且有心为 PyTorch 做贡献但却被 PyTorch 那庞大的 C++ 代码库劝退的人提供的.没必要说谎:PyTorch 代码库有时候确实让人难以招架. 本演讲…
PyTorch torch.autograd模块 深度学习的算法本质上是通过反向传播求导数, PyTorch的autograd模块实现了此功能, 在Tensor上的所有操作, autograd都会为它们自动提供微分, 避免手动计算导数的复杂过程. autograd.Variable是autograd的核心类, 它简单封装了Tensor(最新版PyTorch已经将Variable和Tensor的API合并, 以后直接使用Tensor即可, 不要使用Variable了) backward: 一个Sc…
PyTorch torch.autograd模块 深度学习的算法本质上是通过反向传播求导数, PyTorch的autograd模块实现了此功能, 在Tensor上的所有操作, autograd都会为它们自动提供微分, 避免手动计算导数的复杂过程. autograd.Variable是autograd的核心类, 它简单封装了Tensor(最新版PyTorch已经将Variable和Tensor的API合并, 以后直接使用Tensor即可, 不要使用Variable了) backward: 一个Sc…
pytorch数学运算与统计属性入门1.Broadcasting (维度)自动扩展,具有以下两个重要特征:(1)expand (2)without copying data重点的核心实现功能是:(1)在前面增加缺失的维度(2)将其中新增加的维度的size扩展到需要相互运算的tensor维度的same size 图12.broadcasting自动扩展=unsqueeze(增加维度)+expand(维度扩展) 图23.tensor的合并与分割:(1)合并API1)Cat:对数据进行维度上的合并,不…
05_pytorch的Tensor操作 目录 一.引言 二.tensor的基础操作 2.1 创建tensor 2.2 常用tensor操作 2.2.1 调整tensor的形状 2.2.2 添加或压缩tensor维度 2.3 索引操作 2.4 高级索引 2.5 Tensor类型 2.5.1 Tensor数据类型 2.5.2 数据类型转换 2.5.3 cpu和gpu间数据类型转换 2.6 逐元素操作 2.7 归并操作 2.8 比较 2.9 线性代数 三.Tensor和Numpy 3.1 tensor…
本节翻译自:https://blog.paperspace.com/how-to-implement-a-yolo-v3-object-detector-from-scratch-in-pytorch-part-3/ 前一节我们实现了YOLO结构中不同类型的层,这一节我们将用Pytorch来实现整个YOLO结构,定义网络的前向传播过程,最终能够实现给定一张图片获得检测输出. 这个项目使用python 3.5与Pytorch 0.4进行编写,官方地址. 必备条件: 本教程的part1与part2…