严格次小生成树[BJWC2010]】的更多相关文章

P4180 [模板]严格次小生成树[BJWC2010] 倍增(LCA)+最小生成树 施工队挖断学校光缆导致断网1天(大雾) 考虑直接枚举不在最小生成树上的边.但是边权可能与最小生成树上的边相等,这样删边时权值不改变,就不满足条件了 所以我们可以先用倍增处理出最小生成树上任意2点之间的最大边权和次大边权 枚举每条不在最小生成树上的边,接到树上,再删去最大边(与枚举边的边权不等)或次大边(最大边与枚举边的边权相等),做个判断 判断边(u,v)时 我们只要询问(u,lca)和(v,lca)就可以了 找…
P4180 [模板]严格次小生成树[BJWC2010] 题目描述 小C最近学了很多最小生成树的算法,Prim算法.Kurskal算法.消圈算法等等.正当小C洋洋得意之时,小P又来泼小C冷水了.小P说,让小C求出一个无向图的次小生成树,而且这个次小生成树还得是严格次小的,也就是说:如果最小生成树选择的边集是EM,严格次小生成树选择的边集是ES,那么需要满足:(value(e)表示边e的权值)$\sum_{e \in E_M}value(e)<\sum_{e \in E_S}value(e)$ 这下…
题目描述 小C最近学了很多最小生成树的算法,Prim算法.Kurskal算法.消圈算法等等.正当小C洋洋得意之时,小P又来泼小C冷水了.小P说,让小C求出一个无向图的次小生成树,而且这个次小生成树还得是严格次小的,也就是说:如果最小生成树选择的边集是EM,严格次小生成树选择的边集是ES,那么需要满足:(value(e)表示边e的权值) \sum_{e \in E_M}value(e)<\sum_{e \in E_S}value(e)∑e∈EM​​value(e)<∑e∈ES​​value(e)…
P4180 [模板]严格次小生成树[BJWC2010] 题意 题目描述 小\(C\)最近学了很多最小生成树的算法,\(Prim\)算法.\(Kurskal\)算法.消圈算法等等.正当小\(C\)洋洋得意之时,小\(P\)又来泼小\(C\)冷水了.小\(P\)说,让小\(C\)求出一个无向图的次小生成树,而且这个次小生成树还得是严格次小的,也就是说:如果最小生成树选择的边集是\(E_M\),严格次小生成树选择的边集是\(E_S\),那么需要满足:(\(value(e)\)表示边\(e\)的权值)\…
题目链接\(Click\) \(Here\). 题意就是要求一个图的严格次小生成树.以前被题面吓到了没敢做,写了一下发现并不难. 既然要考虑次小我们就先考虑最小.可以感性理解到一定有一种次小生成树,可以由最小生成树删一条边再加一条边得到.我们枚举加上去的这一条边,加上去以后原\(mst\)会成为一个基环树,想让它次小就在这个环里找一条最长的边(不包含新加进去的)删掉就好.放在树上来讲,就是找到\(u\)到\(v\)路径上的最大值.这样我们就有了非严格次小生成树. 严格要怎么处理?我们需要排除新加…
树上的路径怎么能没有树剖 显然,次小生成树和最小生成树只在一条边上有差距,于是我们就可以枚举这一条边,将所有边加入最小生成树,之后再来从这些并不是那么小的生成树中找到那个最小的 我们往最小生成树里加入一条边一定会在这条边的两个端点之间形成一个环,为了让维持树的结构,我们要断开环上的一条边,而为了让得到的新生成树尽量小,于是我们就选择最大的一条边断开,但是为了保证严格次小,在这条边和最大边长度相同时,断开一条严格次大的边 而从树上找两点之间的最大边和严格次大边,我们显然可以直接上树剖 我们可以维护…
题目链接:https://www.luogu.org/problemnew/show/P4180 这个题卡树剖.记得开O2. 这个题inf要到1e18. 定理:次小生成树和最小生成树差距只有在一条边上 非严格次小生成树:枚举每一条不在最小生成树上的边,加入到最小生成树中构成一个环.删去这个环上的最大值.(此最大值有可能与加入生成树中的边相等,故为非严格次小生成树.)重复此操作取min,得到次小生成树.(基于kruskal实现.) 严格次小生成树:与非严格次小生成树类似,不同在于为了避免删去环上的…
题目链接 题意如题. 这题作为我们KS图论的T4,我直接打了个很暴力的暴力,骗了20分.. 当然,我们KS里的数据范围远不及这题. 这题我debug了整整一个晚上还没debug出来,第二天早上眼前一亮,改出来了. 严格次小生成树,顾名思义,就是数值严格小于最小生成树的最大生成树. \(\text{邓杰:一个很暴力的方法就是,求出最小生成树后,枚举不在生成树里的边,把这条边加进去,然后就会形成一个环,把这个环里最大的边删掉,然后对新形成的生成树取最小值}\) 其实正解应该是吧就是对这个"暴力&qu…
题目链接 Solution 有几点关键,首先,可以证明次小生成树一定是由最小生成树改变一条边而转化来. 所以需要枚举所有非最小生成树的边\((u,v)\).并且找到 \(u\) 到 \(v\) 的边中最大边和次大边. 为什么要找次大边呢?? 因为可能最大边与要替换的边长度相等,那么这种条件生成的便不是严格的次小生成树. 然后找到 \(u,v\) 之间的次大和最大边有两种方式: 树链剖分+线段树维护 剖分最小生成树,然后用线段树维护. 此时线段树节点转移时要考虑左右节点的次大和最大的 \(4\)…
严格次小生成树模板 算法流程: 先用克鲁斯卡尔求最小生成树,然后给这个最小生成树树剖一下,维护边权转点权,维护最大值和严格次大值. 然后枚举没有被选入最小生成树的边,在最小生成树上查一下这条边的两端点的路径上的最长边,如果最长边等于枚举到的边的边权,那么选次长边(没有次长边的话直接跳过),然后在最小生成树的权值上减去路径上最/次长边,加上当前枚举的边的边权 因为如果加入枚举的边的,那么就形成了一个环,需要断开一条边 注意一开始单点次小值赋为0 #include<iostream> #inclu…