VGGNet网络结构】的更多相关文章

深度神经网络一般由卷积部分和全连接部分构成.卷积部分一般包含卷积(可以有多个不同尺寸的核级联组成).池化.Dropout等,其中Dropout层必须放在池化之后.全连接部分一般最多包含2到3个全连接,最后通过Softmax得到分类结果,由于全连接层参数量大,现在倾向于尽可能的少用或者不用全连接层.神经网络的发展趋势是考虑使用更小的过滤器,如1*1,3*3等:网络的深度更深(2012年AlenNet8层,2014年VGG19层.GoogLeNet22层,2015年ResNet152层):减少全连接…
2014年,牛津大学计算机视觉组(Visual Geometry Group)和 Google DeepMind 公司的研究员一起研发了新的深度卷积神经网络:VGGNet ,并取得了ILSVRC2014比赛分类项目的第二名(第一名是GoogLeNet,也是同年提出的)和定位项目的第一名. VGGNet探索了卷积神经网络的深度与其性能直接的关系,通过反复堆叠 3*3 的小型卷积核和 2*2 的最大池化层,VGGNet成功的构筑了16~19层深的卷积神经网络.VGGNet相比之前的 state-of…
目录 VGGNet网络结构 论文中还讨论了其他结构 参考资料 2014年,牛津大学计算机视觉组(Visual Geometry Group)和Google DeepMind公司的研究员一起研发出了新的深度卷积神经网络:VGGNet,并取得了ILSVRC2014比赛分类项目的第二名(第一名是GoogLeNet,也是同年提出的)和定位项目的第一名. VGGNet探索了卷积神经网络的深度与其性能之间的关系,成功地构筑了16~19层深的卷积神经网络,证明了增加网络的深度能够在一定程度上影响网络最终的性能…
上次拜读了CTPN论文,趁热打铁,今天就从网上找到CTPN 的tensorflow代码实现一下,这里放出大佬的github项目地址:https://github.com/eragonruan/text-detection-ctpn 博客里的代码都是经过实际操作可以运行的,这里只是总结一下代码的实现过程,提高一下自己的代码能力,争取早日会自己写代码 !!!>o<!!! 首先从train_net.py开始开刀吧.... import pprint import sys import os.path…
深度残差网络—ResNet总结 写于:2019.03.15—大连理工大学 论文名称:Deep Residual Learning for Image Recognition 作者:微软亚洲研究院的何凯明等人             论文地址:https://arxiv.org/pdf/1512.03385v1.pdf 摘要: 随着人们对于神经网络技术的不断研究和尝试,每年都会诞生很多新的网络结构或模型.这些模型大都有着经典神经网络的特点,但是又会有所变化.你说它们是杂交也好,是变种也罢,总之针对…
目录 0. 论文链接 1. 概述 2. 网络结构 2.1 卷积核 2.2 池化核 2.3 全连接层 3. 训练 4. 测试 5. 其他 6.参考链接 @ 0. 论文链接 论文链接 1. 概述   VGG提出了相对AlexNet更深的网络模型,并且通过实验发现网络越深性能越好(在一定范围内).在网络中,使用了更小的卷积核(3x3),stride为1,同时不单单的使用卷积层,而是组合成了"卷积组",即一个卷积组包括2-4个3x3卷积层(a stack of 3x3 conv),有的层也有1…
1. LeNet 2. AlexNet 3. 参考文献: 1.  经典卷积神经网络结构——LeNet-5.AlexNet.VGG-16 2. 初探Alexnet网络结构 3.…
VGGNet,牛津大学计算机视觉组(Visual Geometry Group)和Google DeepMind公司一起研发,深度卷积神经网络.VGGNet反复堆叠3x3小型卷积核和2x2最大池化层,成功构筑16~19层深卷积神经网络.比state-of-the-art网络结构,错误率幅下降,取得ILSVRC 2014比赛分类第2名和定位第1名.拓展性强,迁移其他图片数据泛化性好.结构简洁,整个网络都用同样大小卷积核尺寸和最大池化尺寸.VGGNet训练后模型参数官方开源,domain speci…
论文下载 源码GitHub 目的 这篇文章是以比赛为目的——解决ImageNet中的1000类图像分类和定位问题.在此过程中,作者做了六组实验,对应6个不同的网络模型,这六个网络深度逐渐递增的同时,也有各自的特点.实验表明最后两组,即深度最深的两组16和19层的VGGNet网络模型在分类和定位任务上的效果最好.作者因此斩获2014年分类第二(第一是GoogLeNet),定位任务第一. 其中,模型的名称——“VGG”代表了牛津大学的Oxford Visual Geometry Group,该小组隶…
一.简介 VGGNet是计算机视觉组(Visual Geometry Group)和Google DeepMind公司的研究员一起研究的深度卷积神经网络.VGGNet探索了卷积神经网络深度与性能之间的关系,通过反复堆叠3*3的小型卷积核和2*2的最大池化层,VGGNet成功地构筑了16~19层(这里指的是卷积层和全连接层)深度卷积神经网络.到目前为止,VGGNet主要用来进行提取图像特征. 二.特点 以常用的VGG16为例,VGGNet的特点是: 整个网络有5段卷积,每一段内有2~3个卷积层,且…