【Miller-Rabin算法】】的更多相关文章

何为Miller Rabin算法 首先看一下度娘的解释(如果你懒得读直接跳过就可以反正也没啥乱用:joy:) Miller-Rabin算法是目前主流的基于概率的素数测试算法,在构建密码安全体系中占有重要的地位.通过比较各种素数测试算法和对Miller-Rabin算法进行的仔细研究,证明在计算机中构建密码安全体系时, Miller-Rabin算法是完成素数测试的最佳选择.通过对Miller-Rabin 算 法底层运算的优化,可以取得较以往实现更好的性能.[1]  随着信息技术的发展.网络的普及和电…
BZOJ 3667: Rabin-Miller算法 Time Limit: 60 Sec  Memory Limit: 512 MBSubmit: 1044  Solved: 322[Submit][Status][Discuss] Description   Input 第一行:CAS,代表数据组数(不大于350),以下CAS行,每行一个数字,保证在64位长整形范围内,并且没有负数.你需要对于每个数字:第一,检验是否是质数,是质数就输出Prime 第二,如果不是质数,输出它最大的质因子是哪个.…
0.1 一些闲话 最近一次更新是在2019年11月12日.之前的文章有很多问题:当我把我的代码交到LOJ上,发现只有60多分.我调了一个晚上,尝试用{2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 61, 24251, 2147483647, 998244353}这么一大串数作为基底,然后左改右改,总算过去了.特别感谢 @骗分过样例 的提醒,现在张贴的代码应该是值得信赖的了. 之前我的同学好像就指出过我的文章的很多问题.比如说我之前写到,Miller Rabin在…
定义: Miller Rabin算法是一个随机化素数测试算法,作用是判断一个数是否是素数,且只要你脸不黑以及常数不要巨大一般来讲都比\(O(\sqrt n)\)的朴素做法更快. 定理: Miller Rabin主要基于费马小定理: \[a ^ {p-1} \equiv 1 (mod p)\]其中\(p\)是质数. 于是就有闲得没事干的一群科学家们想,这个问题的逆命题是否成立呢? 逆命题:若对于任意\(a\),\(a ^ {p-1} \equiv 1 (mod p)\)都成立,那么\(p\)是质数…
判断正整数p是否是素数 方法一 朴素的判定   …
1.约定 x%y为x取模y,即x除以y所得的余数,当x<y时,x%y=x,所有取模的运算对象都为整数. x^y表示x的y次方.乘方运算的优先级高于乘除和取模,加减的优先级最低. 见到x^y/z这样,就先算乘方,再算除法. A/B,称为A除以B,也称为B除A. 若A%B=0,即称为A可以被B整除,也称B可以整除A. A*B表示A乘以B或称A乘B,B乘A,B乘以A--都一样. 复习一下小学数学 公因数:两个不同的自然数A和B,若有自然数C可以整除A也可以整除B,那么C就是A和B的公因数. 公倍数:两…
一些前置知识可以看一下我的联赛前数学知识 如何判断一个数是否为质数 方法一:试除法 扫描\(2\sim \sqrt{n}\)之间的所有整数,依次检查它们能否整除\(n\),若都不能整除,则\(n\)是质数,否则\(n\)是合数. 代码 bool is_prime(int n){ if(n<2) return 0; int m=sqrt(n); for(int i=2;i<=m;i++){ if(n%i==0) return 0; } return 1; } 方法二.线性筛 用 \(O(n)\)…
题目大意 给你一个非常大的整数,判断它是不是素数,如果不是则输出它的最小的因子 题解 看了一整天<初等数论及其应用>相关部分,终于把Miller–Rabin和Pollard's rho这两个算法看懂了O(∩_∩)O~~ Miller–Rabin主要用到了费马小定理,即:设p是一个素数,a是一个正整数且p不整除a,则ap-1≡1(mod p).若x=b(n-1)/2,x2=bn-1≡1(mod n),如果n是一个素数,则x≡1(mod n)或者x≡-1(mod n).因此,一旦我们有bn-1≡1…
/* 题目:给出一个数 如果是prime 输出prime 否则输出他的最小质因子 Miller Rabin +Poller Rho 大素数判定+大数找质因子 后面这个算法嘛 基于Birthday Paradox 简单点说就是 在 1到100 内去一个数 ai ai==42的概率很小 但是如果取两个数 ai bi ai-bi==42 的概率就会变大 应用到找素因子上 就不用像试除法那样一个一个的试 但是如果枚举ai bi 显然也很slow 那么有一个非常好使(奇怪)的函数 f(x)=x*x+c 这…
看一个数是否为质数,我们通常会用那个O(√N)的算法来做,那个算法叫试除法.然而当这个数非常大的时候,这个高增长率的时间复杂度就不够这个数跑了. 为了解决这个问题,我们先来看看费马小定理:若n为素数,a与n互质,则an-1Ξ1(mod n).于是有人想过把它倒过来判断n是否为素数.首先,若a与n不互质,那么n为合数.所以只需要满足an-1Ξ1(mod n)即可,这个a干脆就让它等于2了.即判断2n-1Ξ1(mod n)是否成立.若不成立,那么n必定为合数.但成立时n就是素数吗?又有人找出了个数:…