「NOIP2012」开车旅行】的更多相关文章

[题目链接] [点击打开链接] [题目大意] 从西到东的坐标轴\([1,n]\)上有\(n\)个海拔互不相同的城市,每两个城市之间的距离定义为\(dis(i,j)=|h_i-h_j|\) 小\(A\)和小\(B\)轮着开车,小\(A\)先开始开车.两个人的车一直向东行驶,并且最多行驶\(X\)公里. 小\(A\)和小\(B\)开车的习惯不一样.如果开车从西到东,小\(A\)每一次都会找到后面海拔和当前城市相差次小的城市,小\(B\)则会选择最小值. 如果多个满足条件的城市,那么选择海拔较低的.…
传送门 Luogu 解题思路 第一步预处理每个点后面的最近点和次近点,然后就是模拟题意. 但是如果就这么搞是 \(O(N^2)\) 的,不过可以过70分,考场上也已经比较可观了. 考虑优化. 预处理最近点和次近点的过程可以用 set 优化到 \(O(n \log n)\),也可以用双向链表优化到 \(O(n)\). 这里介绍双向链表的做法. 把所有点装入一个结构体中,按高度降序排序. 那么我们每次取出一个点,可能更新它的最近点和次近点的点只会是它的前驱.前驱的前驱.后继.后继的后继,更新四次就好…
Loj #3057. 「HNOI2019」校园旅行 某学校的每个建筑都有一个独特的编号.一天你在校园里无聊,决定在校园内随意地漫步. 你已经在校园里呆过一段时间,对校园内每个建筑的编号非常熟悉,于是你情不自禁的把周围每个建筑的编号都记了下来--但其实你没有真的记下来,而是把每个建筑的编号除以 \(2\) 取余数得到 \(0\) 或 \(1\),作为该建筑的标记,多个建筑物的标记连在一起形成一个 \(01\) 串. 你对这个串很感兴趣,尤其是对于这个串是回文串的情况,于是你决定研究这个问题. 学校…
Luogu 1081 [NOIP2012]开车旅行 (链表,倍增) Description 小A 和小B决定利用假期外出旅行,他们将想去的城市从1到N 编号,且编号较小的城市在编号较大的城市的西边,已知各个城市的海拔高度互不相同,记城市 i的海拔高度为Hi,城市 i 和城市 j 之间的距离 d[i,j]恰好是这两个城市海拔高度之差的绝对值,即d[i, j] = |Hi − Hj|. 旅行过程中,小A 和小B轮流开车,第一天小A 开车,之后每天轮换一次.他们计划选择一个城市 S 作为起点,一直向东…
题面 Description 小A 和小B决定利用假期外出旅行,他们将想去的城市从1到N 编号,且编号较小的城市在编号较大的城市的西边,已知各个城市的海拔高度互不相同,记城市 i的海拔高度为Hi,城市 i 和城市 j 之间的距离 d[i,j]恰好是这两个城市海拔高度之差的绝对值,即d[i, j] = |Hi − Hj|. 旅行过程中,小A 和小B轮流开车,第一天小A 开车,之后每天轮换一次.他们计划选择一个城市 S 作为起点,一直向东行驶,并且最多行驶 X 公里就结束旅行.小 A 和小B的驾驶风…
描述 小\(A\)和小\(B\)决定利用假期外出旅行,他们将想去的城市从\(1\)到\(N\)编号,且编号较小的城市在编号较大的城市的西边,已知各个城市的海拔高度互不相同,记城市\(i\)的海拔高度为\(H_i\),城市\(i\)和城市\(j\)之间的距离\(d(i,j)\)恰好是这两个城市海拔高度之差的绝对值,即\(d(i,j) = |H_i - H_j|\). 旅行过程中,小$A$和小$B$轮流开车,第一天小$A$开车,之后每天轮换一次.他们计划选择一个城市$S$作为起点,一直向东行驶,并且…
题目描述 有\(n\)个城市,第\(i\)个城市的海拔为\(h_i\)且这\(n\)个城市的海拔互不相同.编号比较大的城市在东边.两个城市\(i,j\)之间的距离为\(|h_i-h_j|\) 小A和小B要开车去旅行.小A先开,他们会轮流开车.小A会把车开到第二近的城市,小B会把车开到最近的城市.如果当前城市到两个城市的距离相同,则认为海拔低的城市比较近.他们只会把车往东边开(即编号大的那边). 小A会先问你对于一个给定的\(x=x_0\),从哪一个城市出发,小A开车行驶的路程总数与小B行驶的路程…
小 A 和小 B 决定利用假期外出旅行,他们将想去的城市从 1 到 N 编号,且编号较小的城市在编号较大的城市的西边,已知各个城市的海拔高度互不相同,记城市 i 的海拔高度为Hi,城市 i 和城市 j 之间的距离 d[i,j]恰好是这两个城市海拔高度之差的绝对值,即d[i,j] = |Hi− Hj|. 旅行过程中,小 A 和小 B 轮流开车,第一天小 A 开车,之后每天轮换一次.他们计划选择一个城市 S 作为起点,一直向东行驶,并且最多行驶 X 公里就结束旅行.小 A 和小 B的驾驶风格不同,小…
题意: 给n个点的海拔h[i](不同点海拔不同) 两点的距离为abs(h[i]-h[j]) 有a.b两人轮流开车(只能往下标大的地方开) a每次会开到里当前点第二近的点 b每次会开到离当前点最近的点(距离相同h小的近) 给定x 如果a或b继续开距离和会大于x就不继续开. 求两个问题 1.给定x=x0求从哪点开始开能使a开的距离:b开的距离最小 不值相同取海拔高的 2.给出m个询问 每个询问给定x1.y1 求从x1开始走且x=y1 a能走的距离和b能走的距离 题解: 不难发现(其实我一开始没发现…
题目大意 :有 n 个城市连成一棵树, 每个城市有两个关键字, 一个是该城市的宗教, 另一个是城市的评级;旅行者要在城市间旅行, 他只会在和自己宗教相同的城市留宿;维护四个树上操作 { 1. “CC x c“ :城市 x 的居民全体改信了 c 教: 2. “CW x w“ :城市 x 的评级调整为 w; 3. “QS x y“ :一位旅行者从城市 x 出发,到城市 y,并记下了途中留宿过的城市的评级总和: 4. “QM x y“:一位旅行者从城市 x 出发,到城市 y ,并记下了途中留宿过的城市…