「JSOI2014」序列维护】的更多相关文章

「JSOI2014」序列维护 传送门 其实这题就是luogu的模板线段树2,之所以要发题解就是因为学到了一种比较NB的 \(\text{update}\) 的方式.(参见这题) 我们可以把修改操作统一化,视为 \(ax + b\) 的形式,然后我们按照原来的套路来维护两个标记,分别代表 \(a\) 和 \(b\) ,那么我们的更新就可以这么写: inline void f(int p, int atag, int mtag, int l, int r) { t[p].sum = (t[p].su…
Loj #3059. 「HNOI2019」序列 给定一个长度为 \(n\) 的序列 \(A_1, \ldots , A_n\),以及 \(m\) 个操作,每个操作将一个 \(A_i\) 修改为 \(k\).第一次修改之前及每次修改之后,都要求你找到一个同样长度为 \(n\) 的单调不降序列 \(B_1, \ldots , B_n\),使得 \(\sum_{i=1}^n (A_i −B_i)^2\) 最小,并输出该最小值.需要注意的是每次操作的影响都是独立的,也即每次操作只会对当前询问造成影响.为…
「JSOI2014」矩形并 传送门 我们首先考虑怎么算这个期望比较好. 我们不难发现每一个矩形要和 \(n - 1\) 个矩形去交,而总共又有 \(n\) 个矩形,所以我们把矩形两两之间的交全部加起来再除以 \(n(n - 1)\) 就是答案. 至于算矩形之间的交我们可以考虑把每个矩形都视为在这个矩形范围内区间加上 \(1\) ,那么我们只需要查询一个矩形内的和 - 该矩形自身的贡献就可以算出一个矩形与其他矩形的交. 所以现在相当于我们只需要实现二维的区间加/查询. 但是数据范围很大我们不可能用…
「HNOI2016」序列 有一些高妙的做法,懒得看 考虑莫队,考虑莫队咋移动区间 然后你在区间内部找一个最小值的位置,假设现在从右边加 最小值左边区间显然可以\(O(1)\),最小值右边的区间是断掉的,但注意它是单调的 于是每个点假装向左边第一个小于它的位置连边,就可以处理出前缀和一样的东西,然后预处理后也是\(O(1)\)的 Code: #include <cstdio> #include <cctype> #include <algorithm> #include…
「SDOI2017」序列计数 思路: 矩阵快速幂: 代码: #include <bits/stdc++.h> using namespace std; #define mod 20170408 #define ll long long struct MatrixType { int n,m; ll ai[][]; void mem(int n_,int m_) { n=n_,m=m_; ;i<=n;i++) ;v<=m;v++) ai[i][v]=; } MatrixType op…
#2051. 「HNOI2016」序列 题目描述 给定长度为 n nn 的序列:a1,a2,⋯,an a_1, a_2, \cdots , a_na​1​​,a​2​​,⋯,a​n​​,记为 a[1:n] a[1 \colon n]a[1:n].类似地,a[l:r] a[l \colon r]a[l:r](1≤l≤r≤N 1 \leq l \leq r \leq N1≤l≤r≤N)是指序列:al,al+1,⋯,ar−1,ar a_{l}, a_{l+1}, \cdots ,a_{r-1}, a_…
「JSOI2014」打兔子 传送门 首先要特判 \(k \ge \lceil \frac{n}{2} \rceil\) 的情况,因为此时显然可以消灭所有的兔子,也就是再环上隔一个点打一枪. 但是我们又会发现当 \(n = 3, k = 2\) 时,这种情况也满足上述条件但是我们只能打掉两群兔子,所以选兔子最多的两个格子打. 对于剩下的情况我们可以考虑 \(\text{DP}\) . 我们可以发现一件事,就是说如果我们把环弱化成链,那么顺着打就可以包含所有状态了. 所以说我们就可以有一个性质:两个…
「JSOI2014」电信网络 传送门 一个点选了就必须选若干个点,最大化点权之和,显然最大权闭合子图问题. 一个点向它范围内所有点连边,直接跑最大权闭合子图即可. 参考代码: #include <cstring> #include <cstdio> #define rg register #define file(x) freopen(x".in", "r", stdin), freopen(x".out", "…
「JSOI2014」学生选课 传送门 看到这题首先可以二分. 考虑对于当前的 \(mid\) 如何 \(\text{check}\) 我们用 \(f_{i,j}\) 来表示 \(i\) 对 \(j\) 的好感度排名,那么对于两个人 \(i\),\(j\) 如果有 \(\max\{f_{i, j}, f_{j, i}\} > mid\) 那么显然这两个人是不能上同一个老师的课的. 而且每个人可以上的课只有两种,我们记为 \(a_{i, 0 / 1}\) 假设 \(i\),\(j\) 对于当前的 \…
「JSOI2014」歌剧表演 传送门 没想到吧我半夜切的 这道题应该算是 \(\text{JSOI2014}\) 里面比较简单的吧... 考虑用集合关系来表示分辨关系,具体地说就是我们把所有演员分成若干个集合,满足同一个集合内的演员两两不能分辨. 初始时所有演员位于同一个集合内. 然后对于某次参加了演出的演员,他们可能分别来自不同的集合,那么这些集合就会有两类不同的组成元素:一种是参加了当前这次演出的,另外一种是没参加的. 那么我们就需要把这两种元素分开,也就是把这个集合拆成两个. 有解的情况就…